میادی جبر

\[s = 60 \text{ cm.} \]

\[V = x(60 - 2x)^2 = 4x^3 - 240x^2 + 3600x \]
\[V = x(60 - 2x)^2 = 4x^3 - 240x^2 + 3600x \]

\[s = 60 \text{ cm} \]
نوت:

به جز از ناشر، هیچ گاه حق ندارد به نشر و طبع این کتاب مبادرت ورزد.

و نیز، خرید و فروش آن بپایان آزاد بگذاره امکان ممکن است.
بسم الله الرحمن الرحیم

مبادئ الجبر

پیشگفتار

این کتاب برای شاگردانی که جهت مشاغل تخصصی و سایری آماده گی می‌گیرند، تهیه و ترتیب شده است. شاگردان، با وصف اینکه معلومات قبلی در الجبر نداشتند باشند، می‌توانند اساسات الجبر را از این کتاب بوبه بهتر و خوبتر آموخته، آنرا در عمل تطبیق نمایند. در تهیه و ترتیب این کتاب سعی شده که در هر موضوع مورد نیاز بحث کافی صورت بگیرد و تمرینات متعدد عملی و تطبیقی، مرحله به مرحله حل کردنده مطالعه طرز العمل های این کتاب، خوانندگی را به تطبیقات واقعی علم الجبر در زندگی، رهمنایی می‌کند. تأکید بیشتر بالای مثالهای تخصصی و مسلکی در نظر گرفته شده است. حل مثالهای متعدد و طرز العمل تحلیل ها، کتاب را بیشتر تخصصی می‌سازد.

مجموعه این کتاب، بعد از تدریس نوت‌های درسی برای مدت یکسال در پروگرام صنف ادونس پروگرام تعلیمی قزای بشری (MTP) تنظیم شده است.

اهداف:

قبل از هر موضوع، اهداف آموزشی که بیان کرد مطالب مطرحه بوده، بیان شده اند. این اهداف شاگرد را به مطالب آموزشی آشنایی و رهمنایی می‌کند. شاگردان با مطالعه اهداف هر بحث، از مفهوم الجبر اگاه می‌شوند، که این شیوه خاص آنها را در رسیدن الف
به هدف مندی مشخص رهناني می‌کنند.

در این تمرین ها و پرتابل ها، عباراتی، توزیع ذهنی خوشی را بهتر تقویه نمایند.

سوالات عباراتی، پرتابل های تکنیکی شامل تمرینات و کار های خانه بوده که این شیوه خاص در توزیع ذهنی و حركي شامل نیم‌بیانشند.

حل مثال‌های متن‌دید. شاگردان را بهتر تشییع و توخیم می‌نماید که در پروسه آموزش سهم فعالتر بگیرند. این کتاب در تدریس علم الجبر، از لحاظ مؤثر بهتر دارد که جوابات تمام تمرینات در اخیر کتاب علقوش شده‌اند. و همچنین طرح حل پرتابل های مشکل درن كتاب رهناني کرده‌ای است. یک شاگرد می‌تواند از این کتاب با استفاده‌ای از جوابات تمام تمرینات، بقسم كتاب کار (Work book) استفاده کند.

استفاده از جوابات تمام تمرینات، بقسم كتاب کار استفاده کند. استعمال کلکولیتر ساینسی در تمرین های این کتاب تطبیق شده است. یک شاگردان با تطبیق محتواي این مجموعه، با طرز استعمال کلکولیتر ساینسی نیز آمادگی و بلندی پیدا می‌کنند.

در اخیر کتاب ضمیمه‌های جداگانه و معلومات ساینسی و تکنیکی علقوش شده که افق

نظر شاگردان را بهتر تقویه می‌نماید.

همه ما میدانیم که ریاضی (الجبر، مثلثات، و کلکولس) بحیث یک وسیله،

در نصاب علمی، علوم طبیعی، علوم اجتماعی و تکنالوژی جاه دارد. یا به عباره دیگر، مفاهیم ریاضی و توافق طبیعی، (فیزیک، کیما و تکنالوژی) را صرف با قواعد و تکنیک

های ریاضی تحلیل کرده می‌توانند. تمام اندازه کرده‌ریاضیاتی ساینسی و تکنیکی را با قواعد

و فرمول‌های ریاضی، خویشتری درد و در عمل تطبیق کرده می‌توانن. مقدمه بسیار مختصر فونکتیون می‌نماید. در مورد اهمیت کورس‌های ریاضی نکات برجسته

را منعكس می‌سازد. و خوانده‌را معتقد می‌سازد که علم ریاضی بحیث یک کورس وسیلو
لازمی و قبل کورس‌های ساینس و تکنالوژی شناخته می‌شود.

با پیروی از نکات فوق ذکر محتوای این کتاب طوری تهیه و ترتیب شده است که علم الجبر (علم بعد از حساب) را به سویه مکاتب و ليسه‌های تخنیکی و مسلکی تحت مطالعه قرار بدهیم. این کتاب تحت عنوان "مبادی الجبر" موضوعات اساسی الجبر، و سوالات عملی تطبیقی و تخنیکی را در بر دارد. چون دری در کتاب موضوعات اساسی الجبر

کنکانده شده اند، میتوانن محتوای این کتاب را بنام کورس اول الجبر علی نامائیم.

با آر نظر داشت اگاهی، شناخت و تجارب چندین ساله معلمي در مورد و سمت علم الجبر، مؤلف احساس می‌نماید که محتوای علم الجبر در یک جلد نه، بلکه در دو جلد تهیه و ترتیب شد. این حالت از یک طرف حجم کتاب را مزون و پیشر مرجه ساخته، و از طرف دیگر، می‌توانیم سوالات متعدد عملی، تطبیقی و تخنیکی را در محتوای کتاب بگنجانیم.

با همین مفکوره، اینست اساسات علم الجبر را در یک جلد اول "مبادی الجبر" تحت بحث و مطالعه قرار می‌دهیم. و خاطر نشان می‌شود که موضوعات متداول علم الجبر در یک جلد، "کتاب دوم الجبر" با در نظر داشت تسلسل این کتاب، در آینده تهیه و ترتیب خواهد گردید.

انجیر نظیر محمد کاریار
فهرست محتويات

فصل أول: أسس الجبر

- تعريف علم الجبر
- سيمبتر أعداد حقيقية
- أعداد ناقل و غير ناقل
- قيمت مطلقته
- اعمال اربعة الجبري بالاي أعداد حقيقية
- مشخصات أعداد حقيقية دار جمع الجبري
- قواعد جمع الجبري
- عمليه ضرب الجبري
- عمليه تفريق
- عمليه تقسيم
- ترتيبات
- قيمت مطلقته و أعداد طرود و عدد نييسي به اصول ساينس
- أعداد دار به شكل طرود دار
- مشخصات ساينس

صفحة 1
عدد نویسی به اصول ساینسی
مشخصات قیمت مطلقة
تمرین ۲-۱
جمع و تفاییل افاده های الجبری
پولی‌نومیل
عملیه جمع پولی‌نومیل
عکس جمعی
عملیه تفاییل پولی‌نومیل
تمرین ۲-۱
ضرب افاده های الجبری
ضره ۱-۱
پای نومیل
انکشاف پای نومیل با استناده مثلث پاسکال
 قضیه پای نومیل
انکشاف پای نومیل با استناده از عدد نویسی نیکتوریل
قضیه دوم پای نومیل
تمرین ۱-۵
نیکتوریل‌ حال
فصل دوم:
معادله و غیر مساوات
حل معادله و غیر مساوات
تمرين 1- 12
معادلات كسري
تمرين 2- 14
بعضی فرمول‌های الجبری و طریق حل آنها .. ۱۴۷
حل پرایل ... ۱۴۹
پروسه چار مرحله‌ی حل پرایل‌ها ۱۵۱
تمرین ۲–۴ ... ۱۵۴
سوالات عبارتی .. ۱۵۶
اعداد کمپلکس .. ۱۷۶
سیستم اعداد کمپلکس ... ۱۷۷
محاسبه اعداد کمپلکس ... ۱۷۸
مساوات برای اعداد کمپلکس ۱۸۰
عملیه تقسیم ... ۱۸۱
معادلات خط مستقیم ... ۱۸۲
تمرین ۲–۴ ... ۱۸۸
معادله درجه دوم .. ۱۸۸
حل معادله درجه دوم ... ۱۹۱
حل تکمیل مربع ... ۱۹۱
فورمول حل معادله درجه دوم ۱۹۶
طرز نوشتی معادله از طریق جذر های آن ۲۰۱
تمرین ۵–۲ ... ۲۰۲

IV
فورمولا و حل پرتاب
تمرین ۶-۲ ۲۱۵
تمرین ۶-۲ ۲۱۸
تمرین ۷-۲ ۲۲۱
تمرین ۸-۲ ۲۲۲
تمرین ۸-۲ ۲۲۵
تمرین ۷-۲ ۲۲۸
تمرین ۸-۲ ۲۲۶
متحول‌ها
تحرول مستقیم (تناسب مستقیم) ۲۳۹
تحرول معکوس (تناسب معکوس) ۲۴۱
اقسام دیگر تحرول ۲۴۵
تمرین ۳-۲ ۲۵۰
تمرین ۴-۲ ۲۵۱
کار بردار سیمپولهای کمیت‌ها ۲۵۵
سیمپولهای ابعاد ۲۵۶
تمرین ۱۰-۲ ۲۶۱
ضریمه‌ها ۲۶۸
مأخذ ۷
بسم الله الرحمن الرحيم

فصل أول: اساسيات الجبر

تعريف علم الجبر:

علم الجبر يك شعبة علم رياضي است كه بطور عموم در پایان مضمون حساب تدريس میگردد.

به عباره دیگر، الجبر بخش دوم علم ریاضی را تشکیل می‌دهد. علم الجبر ابتدای در مقاله عربی وجود آمد ولی بعدا پیشرفت سریع آن در مقاله دیگر صورت گرفت.

علم الجبر، خصوصیات اعداد و مقدار را با حروف (الفبای انسان) با سیمبول‌ها نشان می‌دهد. در افادة های الجبری حروف (الفبای انسان) باس اساس فرضیه ها - مقدار اجناس را نشان می‌دهد.

الجبر اصلاً کلمه عربی است به معنی «دوره منعدم شدن» باین ترتیب آل معادل:

کلمه (انگلیسی) است - (چیز مشخص) و جبر - به معنی دوره بهای یکجا شدن قسمتهای شکسته.

الف: (الف)

سيستم اعداد حقيقی

اهداف:

شما قادر خواهید شد که:

- اقسام مختلف اعداد حقيقی را بشناسید.
- قسمت مطلقه را عدد حقيقی را نشان دهد.
- جمع، ضرب، طرفیق، تقسيم اعداد حقيقی مثبت و منفی را اجرای‌پایی، و جمع معکوس یک عدد حقيقی را در یافته کنید.
1- سیستم اعداد حقیقی:

اعداد اقسام مختلف دارند، و عموماً اعدادی که در جبر ابتدایی بکار می‌روند بنام اعداد حقیقی (Real numbers) یاد می‌شوند.

در دروس آینده، سیستم اعدادی را که مفقود و پیچیده می‌باشند و بنام اعداد کبیکس (اعداد موهومی) یاد می‌شوند، مطالعه خواهیم نمود. اعداد حقیقی، عموماً به اساس ارتباط یک به یک، نظر به نقاط در یک خط نشان داده می‌شوند مانند: شکل ذیل:

\[-5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

اعداد حقیقی مثبت بطرف راست صفر، و اعداد منفی بطرف چپ صفر نشان داده شده اند. صفر بذات خود نه منفی و نه مثبت است.

سیستم اعداد حقیقی به چندین دسته تقسیم گردیده که قرار ذیل ارابه می‌شود:

1- اعداد طبیعی: آن اعدادی که برای حساب کردن بکار می‌روند مانند:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

2- اعداد مکمل: اعداد طبیعی و عدد صفر: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

3- اعداد تام: اعداد مکمل و اعداد مخالف العلائم آن‌ها مانند:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...

4- اعداد ناطلق (ریشه‌یک): اعداد تام، و خارج قسمت تمام اعداد تام (بدون تقسیم به عدد صفر) مانند:

\{ -2/3, 78/5, -4, 6, 9/1, -4/7, 4/5 \}
تبرین (الف)

اعداد دیل را تحت مطالعه قرار دهید:
8\7, 19, 0, 6, 1, 3/4

۱- اعداد طبیعی کدام اند؟

۲- اعداد مکمل کدام اند؟

۳- ارقام کدام اند؟

۴- اعداد ناطق (ریشتل) کدام اند؟

هر عددی که ناطق (ریشتل) نباشد آن را غیر ناطق (غیر ریشتل) می‌نامند.

اعداد ناطق (ریشتل)، و غیرناطق (غیرریشتل) ابه چندین طریق تشريح شده می‌تواند.

اعداد ناطق (ریشتل) عبارت اند از:

۱- تمام اعدادی که a/b کسر تشريح شده بتواند در صورتی که a و b تام باشند و

b مساوی به صفر نشود. 0 ≠ b (از نطقه نظر تعریف)

۲- تمام اعدادی که a/b کسر تشريح شده باشند.

مثال‌ها: اعداد دیل ریشتل اند:

0.3125 = 5/16

متوالی و ناطق است.

\[\frac{13}{428571428571} = \frac{1.142857}{7-8} = 7 \times \frac{1}{7} = 1.1428571428571\]

این عدد هم متوالی و هم ریشتل است.

خط بالا شیش میدهد که اعدادی دوبره تکرار می‌شوند اعداد متوالی اند.

اعداد غیر ناطق (غیرریشتل) عبارت اند از:

۱- آن اعداد حقیقی که ناطق (ریشتل) نباشند. (از نطقه نظر تعریف)

۲- تمام اعدادی که a/b کسر تشريح شده متوالی در صورتی که a و b تام بوده و
(b) مساری به صفر نباشد.

۲. آن اعداد حقیقی که اعداد عشایری آن‌ها نیشوند، در دیگر تکرار هم نیشوند.

اعداد گیرناطق (غير ریشتل) بسیار زیاد اند و بطور مثال:
\[\sqrt{2}, \sqrt{3}, \sqrt{14}, \sqrt{45}, \pi (22/7), \sqrt{10}, \sqrt{11}, \]

۳۰۰۰ اعداد گیرناطق (غير ریشتل) میباشند.

مثال‌های دیگر اعداد گیرناطق (غير ریشتل) عبارت انداز:

4. \[\pi = 3.1415926535 \]

5. اعداد عشایری درباره تکرار نیشوند

6. اعداد عشایری درباره تکراننیشوند

cمرين (ب):

تمرینات 10-5 را تکمیل نمایید.

در دیگر کدام اعداد ناطق (ریشتل) اند؟ و کدام اعداد (غیر ریشتل) اند؟

(کریپتو)؛ ۰.۷۲۷، ۰.۷۴۲، ۰.۴۷۴۷۴۷۴۷۴۷، ۰.۴۶۳۱، ۲۷، ۵۷۳۴۰۰۴۶۶۳۱.

• چون قیمت \(\pi \) غیر ناطق است، لذا ۲۲/۷ عدد کسری شده نیستند.

در حساب، جهت محاسبه و پیدا کردن جواب، اعداد را بکار میبریم، در حالیکه در علم الجبر به هنین منظور سیمولوگهای بکار برده می‌شوند. و بر علاوه آن، سیمولوگهای را در عملیه‌های جمع و تفریق، ضرب، و تقسیم استعمال می‌نماییم. علم الجبر در حقيقة علم پیشرفته در حساب است و برای حل پرآبام‌ها یک روش قوی تر می‌باشد.
ب: قیمت مطلقه
قبل از اینکه ما عملیه جمع را تحت مطالعه قرار دهیم باید خاطر نشان ساخت که قیمت مطلقه یک عدد، عبارت از فاصله آن عدد از عدد صفر بالای یک خط درجه دار می‌باشد. ما قیمت مطلقه را در دروس آینده به روجه دقیق مطالعه می‌نماییم، اما آن را فعلاً فاصله، بالایی خط مستقیم تلقی می‌نماییم. قیمت مطلقه، یک عدد a به شکل a/7 نشان داده می‌شود.
مثالها: سا ده نایید؟

\[
\begin{align*}
7 &= 7/7, \text{ فاصله بالایی خط از صفر تا} \\
5 &= 5/7, \text{ فاصله بالایی خط از صفر تا} \\
0 &= 0/7, \text{ فاصله بالایی خط از صفر تا صفر}
\end{align*}
\]

و تا ایکه قیمت مطلقه یک عدد منفی مطلوب باشد، ضرف علامه آنرا تغییر می‌دهیم.

معنی (آنرا مثبت می‌سازیم). قیمت مطلقه عدد غیر منفی خودبان عدد است.
مثال: 9.7 = 9/7, 2/3 = 2/3/3/3

کمربن:

تمرین 11-14 را اجراء نمایید؟

ساده نمایید:

\[
\begin{align*}
14 &\rightarrow 11 \\
/2 /, /\sqrt{3} /, /, /11.3 /, /, /-3/4 /
\end{align*}
\]
ج: اعمال اربعه الجبره بالاان اعداد حقيقی:

1- عملیه جمع: میدانیم که جمع کردن اعداد غیر منفی اشکال ندارد. بیانید عملیه جمع را درباره در صورتی تکرار نمانیم که اعداد منفی نیز شامل آن باشند.

2- وقتیکه در عدد منفی را باهم جمع می نگاهیم، جمع قیمت های مطلق آنها را دریافت کرده، در جلو (طرف چپ نتیجه) علامه منفی میگذاریم.

3- وقتیکه عدد منفی را با عدد مثبت جمع می نگاهیم، فرق قیمت های مطلق آنها را دریافت کرده، و در جلو (طرف چپ نتیجه) علامه عدد بزرگتر را میگذاریم. اگر قیمت های مطلق مساوی باشند جمع آنها مساوی به صفر است.

مثال: جمع نمایید.

\[-5 + (-6) = -11,\]
\[8.6 + (-4.2) = 4.4,\]
\[-5 + 3 = -2,\]
\[-3/4 + (-7/8) = -13/8,\]
\[\Pi + (-\Pi) = 0,\]
\[-\sqrt{3} + (-4\sqrt{3}) = -5\sqrt{3},\]
\[8 + (-5) = 3,\]
\[-9/5 + 3/5 = -6/5,\]

تمرین: سوالات 15 ۲۰ راهل کنید:

15. \[-5 + (-7) = ?\]
16. \[-1.2 + (-3.5) = ?\]
17. \[-6/5 + 2/5 = ?\]
18. $0.5 + (-0.7) = ?$
19. $8 + (-3) = ?$
20. $\frac{14}{3} + (-\frac{14}{3}) = ?$
مشخصات اعداد حقیقی در جمع الکتری

در حل معادلات الکتری، و سایر کار های مربوط آن، عرض اعداد، سبب می‌گردد به میزان برده میشود. چنانچه یکجا کردن حدهای مشابه یکی ازین طریقه‌ها است. طور مثال: \[4x + 7 = 11 \]

که در اینجا را بهبود نشانده کرده میتوانیم: \[x = \frac{4}{7} \]

هر در اینجا را چنان چه‌یکی در سه‌نیم‌یکی می‌توانیم: مجموعه (۱۱) عین مفهوم را ارائه می‌یکند بدون توجه به اینکه سیم‌پول یا از چه‌یکی‌یکی می‌نماید.

لذا این‌ها هی معمل را چنان تعریف می‌نماییم:

تعریف:

هر گاه در اینجا برای هر تعویض (عامی) عین عدد را نماینده کنند، آن در اینجا باز باهم مشابه اند.

مفهوم از تعویض (با معنی) آنتی که نتیجه‌های هر در اینجا لاشه‌ها نشود. مثلاً:

در رابطه ذیل تعویض قیمت ۲ (عامی) نمی‌باشد زیرا:

\[\frac{(2 - y)}{y + 8} \]

اگر \(y \) را با عدد ۲ تعویض نماییم، مخرج کسر صفر می‌گردد. و تقسیم به صفر عدد، نامحدود (لاشه‌ها) می‌باشد، و ما میگوییم که تعویض عدد ۲ در رابطه قیمت (با معنی) نمی‌باشد زیرا قیمت کسر (لاشه‌های) می‌شود.

\[\infty = \frac{0}{\text{عدد}} \]
جهت تکرار، مشخصات اعداد حقیقی را در عملیه جمع فهرست می‌نماییم، واین مشخصات اند که بالای آنها تمام عملیه‌های جمع) الجبری استوار نیباشند. این مشخصات
بخصوص عمل مهارتی الجبر بوده، و مارا اجازه میدهد که افاده معادل را در یافتن نماییم.

قواعد جمع الجبر:

۱- تفاوت و تبدیل جای (Commutativity):

\[a + b = b + a \]

برای هر عدد حقیقی \(a\) و \(b\) نوشته کرده میتوانیم:

آن اعداد که باهم جمع میشوندترتیب در آنها شرط نیست زیرا در یکجا شدن آنها بالای نتیجه کدام تأثیر وارد نمیگردد.

۲- بروگستگی (associativity):

\[a + (b + c) = (a + b) + c \]

برای هر عدد حقیقی \(a\), \(b\) و \(c\) نوشته کرده میتوانیم:

هنگامیکه صرف عملیه جمع مطرح باشد، جهت گروپ بندی استعمال قوی‌ها به هر نوع که باشد بالای نتیجه تأثیر وارد نمی‌نمایدو جانی است.

۳- مطابقت (Identity):

\(O\) عدد حقیقی میباشد که نظر به آن رابطه

\[a + O = a \]

دیل صدق میکند.

یاچجع کردن به عدد صفر، دوباره همان عدد را می‌دهد.

۴- عکس العلامه (Inverser):

برای هر عدد حقیقی \(a\) عدد مخالف العلامه آن \((-a)\)

موجود میباشد که بنام عکس جمعی (additive inverse) یاد می‌شود.

\[-a + a = 0 \]

مثال: ۰

عکس های جمعی

در بحث عکس های جمعی، ما خوانندگا را به یاد اشتباه بسیار مهم که در الجبر ابتدایی کامی رگ میدهد، متوجه می‌سازیم. این معمول است که \(x\), منفی \(x\) خوانند
میشود، در حالیکه $x -$ ممكن است: مشت باشد، یا منفی باشد، و یا ممکن است صفر باشد. این همه مربوط به قیمت x است. سیمپل ($=$) که در اینجا بکار رفته (عكس جمعی) را نشان می‌دهد. و هیچ‌آن اگر $x-3$ عملیه منفی را نشان می‌دهد، در حالیکه این عملیه منفی نیست بلکه در حقیقت $-3 - x = x$.

احتیاط:

علانه منفی در جلو یک عدد یا افادة به مفهوم عكس جمعی تلقی می‌شود.

مانند: $x - 5$، یا $(2 - 3x^2 + 3x - 2) = 0$، میدانیم که این افادة منفی مشت یا منفی و یا صفر شود و مربوط است به قیمت x.

مثالها: عکس جمعی را در یافته کنید.

10. عکس 5، منفی 5 است. 5$ = (5)$ - اگر باشد 5$ = x$، x = 5
11. عکس منفی 3، خود 3 است. 3$ = (3)$ - اگر باشد 3$ = x$، x = -3
12. عکس صفر خود صفر است. 0$ = (0)$ - اگر باشد 0$ = x$، $x^2 + 4x + 2 = 0$.

و اگر $x = 1$، $x = -1$. $x = 1$، $x = (-1)(x) = -x$

$1 x = -x$، $-(-x) = x$

$(-)(-) = +$، $(-)(-) = +$

برای هر قیمت x رابطه های ذیل صدق می‌کنند:

برای هر عددی به (1) ضرب شود عکس منفی آن x.
تقصیر اول:

برای هر قیمت عدد حقیقی \(x \) صدق می‌کند که:

\[
-x = \begin{cases} \frac{1-x}{1-x} & \text{اگر } x \geq 0 \\ \frac{x}{1-x} & \text{اگر } x < 0 \end{cases}
\]

(ضرب کردن یک عدد به \(1-\))، عكس جمعی را تولید می‌کند. و همچنان عكس جمعی، یک عكس جمعی، عبارت از خود همان عدد است. به مفکره، عكس جمعی، می‌توانیم که برای عدد مطلقه یک تعیین بسیار اساسی بدست بیابیم. قبیل مطلقه عدد غیر منفی خود همان عدد است و همچنان قبیل مطلقه یک عدد منفی عبارت از عدد عكس جمعی همان عدد است.

تعریف:

برای هر عدد حقیقی \(x \) صدق می‌کند که:

\[
|x| = \begin{cases} x & \text{اگر } x > 0 \\ -x & \text{اگر } x < 0 \end{cases}
\]

این تعیین را به وجه بهتر می‌توان چنین تشریح نماییم:

قیمت مطلقه عدد \(x \) عبارت است از:

الف) خود عدد \(x \) اگر \(x \) منفی نباشد.

ب) عكس جمعی \(x \) اگر \(x \) منفی باشد.

در حقیقت، عكس جمعی عدد \(x \) است.
عملیه ضرب الجبری

1- وقتیکه دو عدد منفی را با هم ضرب می‌نماییم، قیمت های مطلقه آنها را به ضرب میکنیم، و علامه نتیجه آن مثبت می‌شود.

2- وقتیکه عدد منفی را با عدد منفی ضرب می‌نماییم، قیمت های مطلقه آنها را با هم ضرب کرده و علامه نتیجه آن منفی می‌شود.

مثال‌ها: سوالات ذیل را ضرب نمایید.

14) $12 = 4 - 3$
15) $5 \cdot 7 = 3.8$ (درا $-(-4) = 20$
16) $-2/3 = -4/5 = 8/15$
17) $-3 = -4$ (درا $-(-2) = 24$

مشخصات اعداد حقیقی در ضرب یا جمع، حالت خاصی ندارند:

1- تغییر و تبديل جای (Commutativity)

برای اعداد حقیقی a و b، چنین صدق می‌کند که:

$ab = ba$

به هر ترتیب که اعداد با هم ضرب شوند، نتیجه را تغییر نمی‌دهند.

2- برای اعداد حقیقی a, b و c, گروه‌بندی ذیل گذشته است:

$a(bc) = (ab)c$
وقتی‌که صرف عملیه ضرب مطرح باشد، گروه ساختن دو یا چندین عدد ذریعه
قوس نتیجه‌ی تغییر نیز ندهد. (گروه‌بندی اعداد در قوس‌ها جائز است)

3- مطلب (Identity)

\[a \times 1 = 1 \times a = a \]

ضرب هر عدد با یک، خود همان عدد را می‌دهد.

4- عکس‌ها

برای هر عدد حقیقی \(a \neq 0 \) یک عدد معین موجود بوده، که
\(a \times a^{-1} = 1 \) و \(a^{-1} \) نوشته‌شده می‌تواند. واین عدد را بنام عکس ضریبی (معکوس) ایجاد می‌کند.

که حاصل ضرب هر دو مساوی به یک است: \(a \times a^{-1} = 1 \)

مثال:

الف: معکوس (عكس ضریبی) 2 عبارت از 2/1 است و معکوس \(\frac{1}{a} \) هم، اگر \(a \neq 0 \)

ب: معکوس (عكس ضریبی) \(\frac{1}{3} \) عبارت از 3/2 است.

ج: معکوس (عكس ضریبی) 2/3 عبارت از 6/25 است. مشخصه‌های مخصوص موجود می‌باشند که عملی‌ی جمع را به عملی‌ی ضرب ارتباط می‌دهد.

5- توزیعی

برای هر عدد حقیقی \(a, b, a \) و \(c \) نوشته‌کرده می‌توانیم:

* \(a(b + c) = ab + ac \)

اين عمل را قانون توزيعي ضرب بالاي جمع نام گذاری مي‌ماند.

* \(ab + ac = (a \times b) + (a \times c) \)
عملیه تفریق

عملیه تفریق عکس عملیه جمع می‌باشد.

که در تعريف های ذیل توضیح گردیده است.

تعريف: برای هر عدد حقیقی a, و b

$$a - b = c$$

اگر $c = a + b$ باشد

خیمه محور:

برای اعداد حقیقی a, و b صدق می‌کند که:

$$\frac{a - b}{b} = a + (\frac{-b}{b})$$

قضیه محور، با تعريفات عملیه تفریق و عکس جمعی بنابر یافته که مفهوم را توضیح می‌نماید.

فریق کردن یک عدد به مفهوم جمع کردن عکس جمعی همان عدد است.

مثال‌های ذیل را منفی کنید

$$8 - 5 = 3,$$
$$3 - 7 = 3 + (-7) = -4,$$
$$8.6 - (-2.3) = 8.6 + 2.3 = 10.9,$$
$$-15 - (-5) = -15 + 5 = -10,$$
$$10 - (-4) = 10 + 4 = 14,$$
$$\frac{5}{9} - \frac{2}{9} = \frac{5}{9} + (-\frac{2}{9}) = \frac{1}{3},$$

در سیستم اعداد حقیقی، عملیه ضرب بالای عملیه تفریق توزیعی است.
که این مفهوم را قضیه ذیل بوجه خوربر تشريح می نماید:

قضیه سوم:

برای هر عدد حقیقی a, b و c صدق می‌کند که:

$$a(b-c) = ab - ac$$

این قانون توزیعی عملی ضرب با لای عملی تقسیم می‌باشد.
عملیه تقسیم

عملیه تقسیم علیه معکوس علیه ضرب میانی که در تعیین ذیل ارائه شده است:

برای هر عدد حقیقی a و هر عدد b که b صفر نباشد ($0
eq b$)

$$a \div b = c$$

است.

اگر باشد ($b \neq 0$) عبارت از عددی است که هر گاه با b ضرب شود عدد a را بدهد.

فضیله چهارم:

برای هر عدد حقیقی a و عدد غیر صفر b:

$$a \div b = a \times \left(\frac{1}{b} \right)$$

تعريف عملیه تقسیم، موازی با عملیه تفیقی، از نظر قضیه های 2 و 4 با هم دیگر مشابهت دارند.

مثال ها: از قرار ضرب کردن با معکوس، عملیه تقسیم را اجراء کنید.

22. $3/4 \div 2 = \left(\frac{3}{4} \times \frac{1}{2} \right) = \frac{3}{8}$

23. $6/7 \div \left(-\frac{5}{3} \right) = \left(\frac{6}{7} \times -\frac{3}{5} \right) = \frac{10}{7}$

از قضیه چهارم استنباط می‌شود که خارج قسمت دو عدد منفی، مثبت است و همچنین خارج قسمت یک عدد منفی و یک عدد مثبت، خود منفی است.

ترتیب:

ترتیب اعداد حقیقی از ره حدد مثبت، ذره به ذره نشان داده می‌شود:

$$a \div b$$

اگر عدد a به طرف چپ عدد b مجموع شود، پس عدد a از عدد b خوددارت.
تعریف: برای هر عدد حقیقی a و b، $a < b$ اگر $a - b$ مثبت باشد.

مثال: غیر مساوات $6 = 8$، $8 > 6$ تحقیق و تحلیل کنید:

- عدد 6 مثبت است.
- عدد 13 مثبت است.
- عدد 2 مثبت است.

تعمیم (له)

برای اعداد حقیقی a و b, اگر $b > a$ باشد، تعریف $a < b$ است.

اگر a و b دو عدد مثبت باشند، $a > b$ باشد.

تشریح:

اتجاه تعریف $a > b$ را در صورت که $1 - x$ را در صورت پیدا کنید که:

- $x = 6, 22.
- $x = 8, 3.4.
- $\frac{x^2 - 3x}{2} = ?$

در صورتی که $x = 2$, $x = 1$ باشد.
ضرب كنيد:

25. $4 \times (-6) = ?$
26. $-\frac{7}{5} \times \frac{-3}{5} = ?$

27. $(-2) \times (-3) \times (-4) \times (-6) = ?$

تفريق كنيد:

28. $2.5 - 1.2 = ?$
29. $12 - (-5) = ?$

30. $-\frac{8}{5} - \frac{3}{5} = ?$
31. $-20 - (-7) = ?$

تقسيم كنيد:

32. $-20 \div -5 = ?$
33. $4.5 \div -1.5 = ?$

34. $-\frac{4}{5} \div \frac{3}{10} = ?$
35. $-\frac{5}{6} \div \frac{-5}{12} = ?$

تمرينات 1.1:

الف)

اعداد ذيل را تحت غور بغير ويد:

$-6, 0, 3, -1/2, \sqrt{3}, -\sqrt{2}, \sqrt{2/3}, \sqrt{7}, \sqrt{5/8}, 14, 9/4, 8.53, 9, 1/2$

1- كدام اعداد طبيعي اند؟
2- كدام اعداد مكمل اند؟
3- كدام اعداد غير ناطق (غير ريشنل) اند؟
4- كدام اعداد ريشنل اند؟
5- كدام اعداد , اعداد (تام) اند؟
6- كدام اعداد حقيقي اند؟

ب)

كدام يكي ناطق (ريشنل)و كدام يلك غير ناطق (إبريتشنل) است:

7. $6/5, -3/7, -9, 0.032$
8. $4.5\overline{16516}$
9. $7.3232\overline{32}$
13. 4.303003000003 14. 6.4141141141114

15. $\sqrt{6}$ 16. $\sqrt{7}$ 17. $-\sqrt{14}$

18. $-\sqrt{12}$ 19. $\sqrt{49}$ 20. $-\sqrt{16}$

21. $\sqrt[3]{5}$ 22. $\sqrt[4]{10}$

ساده سازید:

23. $12/1$ 24. $-2.56/1$ 25. $-47/1$ 26. $0/1$

دریافت کنید x و y را و تیکه:

27. $x = -7$ 28. $x = -10/3$ 29. $x = 57$

30. $x = 13/14$

$- (x^2 - 5x + 3) = ?$, $-(7 - y) = ?$

دریافت کنید:

و تیکه:

31. $x = 12$ 32. $x = -8$ 33. $y = -9$

34. $y = 19$

محاسبه کنید:

35. $-3.1 + (-7.2)$ 36. $-735 + 319$

37. $9/2 + (-3/5)$ 38. $-6 + (-4) + (-10)$

39. $-7(-4)$ 40. $-8/3(-9/2)$

41. $(-8.2)6$ 42. $-6(-2)(-4)$

43. $-7(-2)(-3)(-5)$ 44. $(-7.1)(-2.3)$

45. $-14/3(-17/5)(-21/2)$ 46. $-13/4(-16/5)(23/2)$
47. \(-20/4\)
48. \(49/-7\)
49. \(-10/70\)
50. \(-40/8\)
51. \(2/7 \div (-14/3)\)
52. \(-3/5 \div (-6/7)\)
53. \(-10/3 \div (-2/15)\)
54. \(-12/5 \div (-0.3)\)
55. \(11 - 15\)
56. \(-12 - 17\)
57. \(12 - (-6)\)
58. \(-13 - (-4)\)
59. \(15.8 - 27.4\)
60. \(-19.04 - 15.76\)
61. \(-21/4 \div (-7/4)\)
62. \(10/3 - (-17/3)\)

این علامه نشان می‌دهد که محاسبه ذریعه کلکسیون‌های آب‌های اجرای شود.
63. a) \((1.4)^2\)
64. a) \((2.1)^3\)

\[
\begin{array}{c}
(1.41) \\
(1.414) \\
(1.4142) \\
(1.41421)
\end{array}
\]
\[
\begin{array}{c}
(2.15) \\
(2.154) \\
(2.1544) \\
(2.15443)
\end{array}
\]
مشخصات هر جمله ذیل چه مفهوم دارد؟

65. \(K + 0 = k \) 66. \(ax = xa \)
67. \(-1 \cdot (x + y) = (-1 \cdot x) + (-1 \cdot y)\) 68. \(4 + (t + 6) + (4 + t) + 6\)
69. \(c + d = d + c\) 70. \(-67 \times 1 = -67\)
71. \(4 \cdot (xy) = (4x) \cdot y\) 72. \(5 + (a + t) = 5a + 5t\)
73. \(y \cdot (1/y) = 1, y \neq 0\) 74. \(-x + x = 0\)
75. نشان بدهید که عملیه تفاضل مبادله (تفاهر و تبادل جایی) نیست.
76. \(a - b \neq b - a\)
77. نشان بدهید که عملیه تقسیم آمیزش نیست.
78. نشان بدهید که عملیه تفاضل آمیزشی نیست.
79. با استفاده از تعریف قیمت مطلقه، مفهوم اصطلاح / 3 - 1/x را تشریح و واضح نمایید.

برای انکه عدد متوالی را به کسر تبادل نماییم مثل ذیل را در نظر بگیرید:

\[n = 8.9765656565 \]
\[\Rightarrow 8.9765 \]

\[8.9765656565 \]

باشد

\[10,000n = 89765.6565 \]
\[100n = 897.6565 \]

اگر

\[9,900n = 88,868 \]

\[n = 88,868/9900 \]
<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.</td>
<td>0.9999</td>
</tr>
<tr>
<td>81.</td>
<td>3.7474</td>
</tr>
<tr>
<td>82.</td>
<td>18.3245245</td>
</tr>
<tr>
<td>83.</td>
<td>12.347652</td>
</tr>
</tbody>
</table>

84. $(b + c)a = ba + ca$

85. ثبوت کنید که هر عدد مثبت از صفر بزرگتر است.
۲-۱ قیمت مطلقه، و اعداد توان دار و عدد نویسی باصول ساینسی

اهداف:

شما قادر خواهیدشد که:

افاده‌های اعدادتام و توان دار را ساده‌سازید.

اعداد از شکل عضوی به شکل ساینسی و برعکس آن تبدیل نمایید.

افاده همان‌را که قیمت‌های مطلقه در آن شامل باشند، ساده‌سازید.

الف: اعدادتام به شکل توان دار:

هر گاه یک عددتام کلانتر از (۱) به‌جز توان عده‌کار گردد، در پنچورت عدد

نظر به قیمت توان، در دنس خود ضرب می‌شودمانند: ۵

به معنی = ۵X۵ X۵ X۵ X۵ X۵ = a

اگر عدد صفر با بین توان یک عدد استفاده می‌گردد، همان عدد مساوی می‌شود یک.

مانند: ۱ = (۳۷) ۱ = a

(۲) (۴) (۴) = ۱۶

یا ۱۶ = (۴) (۴)

- x = -1 X x = - x
تمرين:

اعداد تاريخ به توان نشان دهيد.

1. \(8 \times 8 \times 8 \times 8\),
2. \(x \times x \times x\),
3. \(4y \times 4y \times 4y \times 4y\).

تمرين از 4 الي 10:

 اعداد را بدون توان بنويسيد.

4. \(4^3\)
5. \((5x)^4\)
6. \((-5)^4\)
7. \(-5^4\)
8. \((3x)^0\)
9. \((5y)^2\)
10. \((-2x)^3\)

تعريف:

اگر \(n\) عددتام منتبت است، پس \(a^n\) و \(1/a^n\) عین مفهوم را دارند.

به عباره دیگر، \(a^n\) و \(a^{-n}\) معکوس یکدیگر اند.

مثال‌ها:

1. \(1/5^2 = 5^{-2}\)
2. \(-3^7 = 1/7^3\)
3. \((-4^5 = 1/5^4 = 1/5 \times 5 \times 5 \times 5 \times 5 = 1/625\)

44
توضیحات:

11. $\frac{3}{4}$ را به توان منفی بیانسید.
12. -10 را به توان مثبت بیانسید.
13. برای 3^{-3} سیمول دیگر بیانسید (به‌طور دوباره و به‌طور کامل).

مشخصات توان‌ها:

ضرب توان‌ها: مثال اعداد توان‌دار ذیل را در نظر گیرید:

$$b^5 \times b^{-2} = (b \times b \times b \times b \times b) \times \frac{1}{b \times b} = (b \times b \times b \times b) \times b \times b \times b$$

$$= 1 \times b \times b \times b = b^3$$

تفصیل هانجمه

برای هر عدد a و اعداد تام m و n میتوان نوشت:

$$a^m \times a^n = a^{m+n}$$

با استفاده از قضیه پنجم میتوان گفت که توان های اعداد در حالت ضرب یکسان شوند، به شرط اینکه قاعده‌های آنها مساوی باشند. مثال:

4. $4^{-2} \times 4^{-2} = 4^{(-2) \times (-2)} = 4^2$
5. $5^5 = 5^5$
6. $c^{-3} \times c^{-2} = c^{-5}$
7. $a^3 \times a^7 = a^{3+7}$
تمرین:

از 14 عدد 19 ضرب و ساده سازید:

14. \(\frac{-3}{7} \times 8 \)
15. \(\frac{7}{y} \times -\frac{2}{y} \)
16. \((9x^4)(-2x^4)\)
17. \((-3x^3)(25x^6)\)
18. \((5x^3y^4)(-2x^9y^2)\)
19. \((4x^2y^3)(15x^2y^3)\)

عملیه تقسیم:
با در نظر داشت قضیه پنجم،
مثال‌های ذیل را در نظر بگیرید:

\[
\begin{align*}
\frac{5}{8} &= \frac{5}{8} \\
\frac{3}{8} &= \frac{3}{8} \\
\frac{5}{3} &= \frac{5}{3} \\
\frac{-3}{8} &= \frac{-3}{8} \\
\frac{5-3}{2} &= \frac{5-3}{2} \\
\frac{2}{8} &= \frac{2}{8} \\
\frac{-2}{7} &= \frac{-2}{7} \\
\frac{-3}{7} &= \frac{-3}{7} \\
\frac{-2-3}{7} &= \frac{-2-3}{7} \\
\frac{-5}{7} &= \frac{-5}{7}
\end{align*}
\]

توضیحات:

برای هر قیمت غیر صفر \(a\) و اعداد ثابت \(m\) و \(n\) میتوان نوشته:

\[
\frac{m}{a} = \frac{m-n}{a}
\]
مثال: تقسیم نموده ساده‌سازی:

8. \[\frac{5}{9} = \frac{5}{9} = 5 \]
9. \[\frac{-4}{-5} = \frac{4}{5} + 1 \]
10. \[\frac{x}{x} = x \]
11. \[\frac{-5}{-8} = \frac{5}{8} = \frac{3}{2} \]

با استفاده از مفهوم قضیه ششم، میتوانیم نشان بدهیم که \(a^0 \) تعیین شده نیستند.

در صورتی که \(a^0 = 0 \) قیمت بگیرد.

\[(a) \] مفهوم ندارد.

اگر \(a \) مساوی صفر باشد، \(a^0 \) مفهوم ندارد.

ارتقا توان به توان:

\[\left(\frac{2}{5} \right)^4 = \frac{2^4}{5^4} = \frac{16}{625} = \frac{5^2}{5^4} = \frac{5^4}{5^4} = 5 \]

مثال: توان کل به توان فرعی ضرب می‌شود.

安定‌های هفتم:

برای هر عدد \(a \) و هر اعداد تام \(m \) و \(n \) میتوان نوشت:

\[a^m a^n = a^{m+n} \]

مثال:

12. \[\left(\frac{2}{3} \right) = \frac{2^3}{3^3} = 8 \]
13. \[\left(\frac{-5}{4} \right) = \frac{-20}{4} \]
14. \[\left(\frac{2^3}{\frac{2}{3}} \right) = \left(\frac{x}{y} \right) = \left(\frac{3}{2} \right) \]

\[= \frac{3}{2} - \frac{3}{2} \]

\[= 3 \]

27
15.
\[(5 \times \frac{3}{2} - \frac{4}{2} - \frac{12}{20} \times 8) = 625 \times \frac{12}{20} \times \frac{8}{z}\]

16.
\[(4 \times \frac{3}{4} - \frac{4}{4} - \frac{8}{12}) = (1/256) \times \frac{8}{12}\]

تمرین: تقسیم و ساده نماید:

20.
\[4/4^2\]
21.
\[5/5\]
22.
\[10/10\]
23.
\[9/9\]
24.
\[y/y\]
25.
\[10y^2/2y^3\]
26.
\[42x^7 y^6 / 12 y^3 x^{10}\]

27.
\[(3^7) = ?\]
28.
\[(2/7) = ?\]
29.
\[(y^4) = ?\]
30.
\[(2xy)^3\]
31.
\[(4x^2 y^2)^2\]
32.
\[(3x y^2) = ?\]
33.
\[(10x y z^2) = ?\]

اتحتیاط:
هنگامیکه توانهای حاصل ضرب را به توان کل داشته باشیم، باید هر ضرب "به توان کل" بلند بردی شود.

\[(8x^2 y^3) = 8 (x^3 y^3)\]

مثال: ...

تموین (نمونه):
ساده نمایید:

27.
\[(3^7) = ?\]
28.
\[(2/7) = ?\]
29.
\[(y^4) = ?\]
30.
\[(2xy)^3\]
31.
\[(4x^2 y^2)^2\]
32.
\[(3x y^2) = ?\]
33.
\[(10x y z^2) = ?\]
ب: عدد نویسی باصول ساینسی

جهت مطرح ساختن بهتر عدد بسیار کلان، نیاز به ضریب خوردن (عدد نویسی به اصول ساینسی)، همچنین مشخص دارد. و همچنان در موضوع مطالعه (مفهوم لوگارتم) ارزش زیاد دارد.

\[\eta = \frac{13}{8} \times 5.64 \times 10^{-8}, \quad a = 10, \quad b = 7.8 \times 10^{-6} \]

میشود مانند: 10، 10

در عدد نویسی قاعدای اینست، که عدد را با (1) 10/10 ضرب می‌نماییم.

و عدد مطلوب باید تا رقم عدد صحیح داشته باشد. این مفهوم در مثال‌های 17 و 18 واضح شده است.

مثال 17: 96,000 را به اصول ساینسی تبدیل کنید:

\[96,000 = 96,000 \times 10^{-4} \quad (K = 4) \]

\[= 96,000 / 10 \times 10 = 96,000 \times 10^{-4} \]

\[= 9.6 \times 10^{-4} \]

مثال 18: 0.00000478 را به اصول ساینسی تبدیل کنید:

\[0.00000478 = 0.00000478 \times 10^{6} \]

\[= (0.00000478 \times 10^{6}) \times 10 = 4.78 \times 10^{-6} \]

مثال‌های دیگر: به اصول عشایری تبدیل نمایید:

19. \[6.043 \times 10^{5} = 604,300 \]
20. \[4.7 \times 10^{-8} = 0.000000047 \]
34. 465,000
 به یادآوری ساینسی تبدیل نمایید:

35. 3789

36. 0.000145
 به یادآوری ساینسی تبدیل نمایید:

37. 0.0000000067

38. 4.67×10^{-5}
 به یادآوری عادی تبدیل کنید:

39. 7.894×10^{-12}

چ : مشخصات قیمت مطلقه

مادرین بحث ، مشخصات قیمت مطلقه را تحت مداوه قرار می‌دهیم و با استفاده از آن، افتاده های الجبری را که معادله آن است ساده می‌سازیم.

مثال:

21. $\frac{3 \times 5}{-15} = -3$

22. $\frac{4 \times (3)}{12} = 4$

مشاهده می‌شود که حاصل ضرب قیمت های مطلقه خود، عدد مطلقه می‌شود.

همچنان قیمت مطلقه یک خارج قسمت عبارت است از اخراج قسمت قیمت‌های مطلقه آن.
مثال:

23. \[\frac{25}{-5} = -5 = 5 \]
\[25 \div -5 = 25 \div -5 = 5 \]
\[25 \div -5 = |25| \div |5| \]

رابطه، \(a - b = a + b \)

24. \[\frac{2}{-3} = 9 \]
\[\frac{2}{-3} = 9 \]
\[\frac{2}{-3} = 9 \]

25. \[|-3| = 3 \]
\[3 = 3 \]
\[-3 = -3 \]

فضای 8:

برای هر یک از اعداد حقیقی \(a, b \) و هر عدد غیر صفر \(c \)، میتوان نوشت:

1. \[\frac{a}{b} = \frac{a}{b} \]
2. \[a \div c = a \div c \]
3. \[a^n = a^n \]
4. \[a = a \]

مثال ها:

26. \[3x = 3 \]
27. \[x^2 = x \]
28. \[x^2 \cdot y^3 = \frac{x^2}{x^2} \cdot \frac{y^3}{y} = \frac{x^2}{y} \cdot \frac{y^3}{y} = \frac{x^2}{y} \]
29. \[x^2 \cdot y = x^2 \cdot y \]
30. \[-3x = 3 \cdot x \]
تمرين 1: از 40 الی 43 ساده نمائید؟

40. \(\frac{1}{-6ab} \)
41. \(x^3 \)
42. \(10 \frac{m}{n} \)
43. \(-2x^3 \frac{3}{y^2} \)

تمرين 2-1: ساده نمائید؟

1. \(\frac{3}{2} \times 2 \)
2. \(\frac{3}{4} \times 5 \)
3. \(b \times \frac{-2}{b} \)
4. \(\frac{3}{c} \times \frac{-3}{c} \)
5. \(\frac{2}{4} \times 4 \times 4 \)
6. \(\frac{2}{5} \times 5 \times 5 \)
7. \(2x \times 3x^2 \)
8. \(3y^2 \times 4y^3 \)
9. \((5a^2b) \times (3a^3b^4) \)
10. \((4xy^4) \times (3x^4y^5) \)
11. \((2x^3) \times (3x^2) \)
12. \((4y^2) \times (3y^3) \)
13. \((6x^5y^{-2}z^3) \times (-3x^3y^2z^{-2}) \)
14. \((5x^4y^2z^3) \times (-2x^4y^2z) \)
15. \(\frac{40}{b} \times \frac{37}{b} \)
16. \(\frac{39}{a} \times \frac{32}{a} \)
17. \(\frac{x^2}{y^2} \times \frac{-1}{x} \)
18. \(\frac{3-3}{x} \times \frac{-1}{y} \)
19. \(\frac{9a^2}{-3a^2} \)
20. \(16y^2 \times (-4y^2) \)
21. $24^5 a^3 b / 8^4 a b$
22. $30^6 4^3 y^2 / 5x^4 y^2$
23. $12^2 x^3 y^2 z^2 / 21xy^2 z^3$
24. $15X^3 y^2 z^3 / 45xyz^5$
25. $(2ab^2)^3$
26. $(4xy)^2$
27. $(-2x^3)^4$
28. $(-3x^2)^4$
29. $-(2x^3)^4$
30. $-(3x^2)^4$
31. $(6a^2 b c)^2$
32. $(5x^2 y z)^2$
33. $(-5c^{-1} d^{-2})^2$
34. $(-4x^{-1} z^{-2})^2$
35. $(4^{-2} + 2^{-1}) / 8$
36. $3^{-2} + 2 / 7$
37. $[(-2)^4 + (-4)^2] / (-1)^8$
38. $[(-3)^4 + (-2)^4] / (-1)^6$
39. $(3a^{-2} b^{-3} c^3 / (2a b c)^2$
40. $(2a^{-1} b^{-3} c^3 / (3a b c)^2$
41. $-2^{-3} x^{-2} y^{-3} / 3 x y$
42. $-2^{-4} x^{-3} y^{-3} / 5 x y / 2 x y$
به یادآوری هایی ساینسی تبدیل کنید:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>43.</td>
<td>$58,000,000$</td>
</tr>
<tr>
<td>44.</td>
<td>$27,000$</td>
</tr>
<tr>
<td>45.</td>
<td>$365,000$</td>
</tr>
<tr>
<td>46.</td>
<td>3645</td>
</tr>
<tr>
<td>47.</td>
<td>0.0000027</td>
</tr>
<tr>
<td>48.</td>
<td>0.00000658</td>
</tr>
<tr>
<td>49.</td>
<td>0.027</td>
</tr>
<tr>
<td>50.</td>
<td>0.0038</td>
</tr>
<tr>
<td>51.</td>
<td>$910,000,000,000$</td>
</tr>
<tr>
<td>52.</td>
<td>$93,000,000$</td>
</tr>
</tbody>
</table>

فاصلهٔ بین کره زمین و آفتاب به واحد میل ($= 93,000,000$) گفته می‌شود:

(Şemâl 52) d

(کره زمین) d

(آفتاب)

به یادآوری های عاشقی تبدیل نمایید:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53.</td>
<td>4×10^5</td>
</tr>
<tr>
<td>54.</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>55.</td>
<td>6.2×10^{-3}</td>
</tr>
<tr>
<td>56.</td>
<td>7.8×10^6</td>
</tr>
</tbody>
</table>
57. \(7.69 \times 10^{12} \) 58. \(8.54 \times 10^{-7} \)

59. \(9.46 \times 10^{12} \times 1 \) (انور به واحد کیلو متر که در یک سال حرکت می‌کند)

60. \(1.7 \times 10^{-24} \) (کتله اتوم هایدروژن به گرام)

\(\frac{2}{x} = ? \), \(\frac{2}{x - x} = ? \)

61. \(x = 5 \) 62. \(x = -7 \)

63. \(x = -1.08 \) 64. \(x = \sqrt{3} \)

65. \(/ 9xy / \) 66. \(/ 4y / \)

67. \(/ 3a^2b / \) 68. \(/ 4a/b^2 / \)

ساده نمایید:

ساده نمایید، فرض کنید که تمام توان ها اعداد دام اند:

69. \(\left(\frac{x^3}{x^3} \right) \) 70. \(\left(\frac{y^3}{y^3} \right) \)

71. \(\left(\frac{a + x}{x \cdot X} \right) \) 72. \(\left(\frac{m^{-1}}{m^{-1}} \right)^{x-y} \)

73. \(\left(\frac{a \cdot b}{x \cdot y} \right) \) 74. \(\left(\frac{x-b}{x^{-1}b} \right) \left(\frac{m}{m} \right)^{n-X} \)

75. \(\left(\frac{a \cdot b \cdot c}{(-3x \cdot y)^2} \right) \) 76. \(\left(\frac{r}{x^2 \cdot y^2} \right) \left(\frac{r^2}{x^2 \cdot y^2} \right)^{-2-3} \)
قانون مالیاتی مالیه شرکت از بابت خرید خانه، دالر به مفاد نرخ (i) قرضه M
باشد، و n تعداد سال‌ها (12 ضرب تعداد سال‌ها).

77- قیمت یک خانه 92,000 $ و پیش پرداخت آن 14,000 $ میباشد. مفاد به نرخ 3/4/3% وقت (مدت) قرض‌داری 5 سال میباشد. تادیه مالیات خانه را معلوم کنید؟

78- تمرین 77 را برای مدت قرض‌داری 20 و 30 ساله تکرارا، حل کنید.

در سوالات ذیل غلظی را پیدا کرده، بعداً جواب صحیح آنرا در یافتن نمایید.

79. \[\frac{4}{x} \cdot \frac{3}{x} = \frac{9}{x} \]

80. \[\frac{4}{x+y} \cdot \frac{7}{2} = \frac{5}{2} \cdot \frac{2}{x} \]

81. \[(2x^3y^2z^3) = (x^1y^3z^6) \]

1-3 جمع و تفریق اعداد همان الگوریتم

 Leah : شما قادر خواهیدشده که با تکمیل کردن این مبحث.
- درجه هر حد را در پولینومیال و درجه پولینومیال را در یافته کنید.
پولینومیال ها و اعداد های الگوریتم را جمع نمایید.

\[\frac{6x^3 + 1}{2x^2 + y^2} = 6x^3 + 1 \]

31
الف) پولینومیل:
افاده های الجبری ذیل را بنام پولینومیل های یک متحوله می نامند.

\[\frac{3y^3}{2} + \frac{5y^2}{2} - \frac{4}{5} - \frac{7}{5}x + 5 \]

تعریف:
هر افادهٔ الجبری که به شکل ذیل باشد آنرا پولینومیل یک متحول می‌نامند.

\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 \]

در صورتی که عدد تام و غیر منفی باشد و \(a_n \) اعداد حقيقی بوده، که بنام ضریب حذ پایاد می‌شود. بعضی‌ها تمام ضریب‌ها صفر شده می‌توانند. در افاده یک افای حکیم‌که به هر علل‌های بیشتر جدا شده باشد آنرا حد می‌گویند.
آیا افاده ذیل یک پولینومیل است یا خیر؟

\[\frac{3}{8}x^3 - 6x^2 + 7x - 5 \]

(1) متحول یک سیمبول است که اعداد مختلف را نمایندگی می‌کند. عموماً حروف به

که متحول استعمل می‌شوند. اما تبام حروف متحول شده نمی‌توانند.
این افادة پولینومیل است زیرا، آنرا چنین نوشته کرده میتوانیم.

\[(5-4) - 6 \cdot 2 + 7x^3 + 8x^3 \]

بخاطر داشته باشید که ضریب میتواند منفی باشد.

افاده‌های دیگر پولینومیل چندین متحول میباشند؟

\[5x^2 y^3 + 17xy - 2, \quad 14a^2b, \quad \pi r^2 + 2 \pi rh \]

مثال 1: پولینومیل 2\(x^3 y^2 - 7xy^2 + 2 \) به حداکثر دارد:

\[5x^3 y^2 - 7xy^2 + 2 \]

که عبارت اند از:

\[5x^3 y^2, -7xy^2, 2 \]

که ضریب های آن بالاترین 5، 7، -2 2 میباشند.

درجه یک حداکثر پژوهش‌ها متحول‌ها میباشد و درجه پولینومیل عبارت

است از برگزترين درجه حداکثر پولینومیل. پولینومیل که ضریب متحول آن صفر داشته باشد

درجه آن نیز صفر میشود.

مثال دوم: در پولینومیل:

\[2x^2 + 7x + 5 \]

درجه های حداکثر بالاترین 4، 3، صفر میباشند و پولینومیل موسوم درجه 4

است.

پولینومیل یک حداکثر را بنام مانومیل (Monomial) یاد میکنند.

پولینومیل دو حداکثر را بنام باینومیل (Binomial) یاد میکنند.

پولینومیل سه حداکثر را بنام ترآی نومیل (Trinomial) یاد میکنند.

28
ب: عملیه جمع:

اجتماع اربیع یعنی: جمع، تفریق، ضرب و تقسیم افاده های الجبری که پولینومیال نسبیشاند و پولینومیال هایی به عین شکل اجراء میشود:

یا به عباره دیگر، هر عمل که ما میتوانیم در اعمال اربیع پولینومیال تطبیق نشان نماییم، در مورد افاده های الجبری که پولینومیال نیست، نیز تطبیق میشود. در ذلک افاده هایی که پولینومیال نسبیسند نشان داده شده است:

\[
3 \sqrt[3]{x} + 4y \\
4 \frac{(3x^2 + 2)/(x - 1)}{1} \\
5 \ 4x^{\frac{1}{2}} - 5y^{\frac{3}{2}} \\
6 \ 3x^2 - 4y + 2x^2 = 3x^2 + 2x^2 - 4y \\
\quad = (3 + 2)x^2 - 4y \\
\quad = 5x^2 - 4y \\
7 \ 4x^{\frac{1}{2}} y^{\frac{1}{2}} + 7x^{\frac{1}{2}} y^{\frac{1}{2}} = 11x^{\frac{1}{2}} y^{\frac{1}{2}} \\
8 \ -2x^2 \sqrt[3]{y^3} + 5x^2 \sqrt[3]{y^3} = 3x^2 \sqrt[3]{y^3}
\]

با این که یکجا شرط مانند:
تمرين: از 3 الی 5 جمع نمایید:

3. \(\frac{3}{5} \frac{2}{x} y - \frac{2}{2} \frac{3}{x} y + 4\frac{3}{x} y \)

4. \(3xy^2 - 4\frac{2}{x} y + 4\frac{2}{x} y + 2\frac{2}{x} y \)

5. \(5x^4 \sqrt{y} - 2x^4 \sqrt{y} + 2 \)

جمع کردن دو پلیتومیل چنین صورت می‌گیزد:

\(-3x + 2x - 4\) \(+ 4x + 3x^2 + 2\)

\(-3x + 2x - 4\) \(+ (4x + 3x^2 + 2) = x + 3x + 2x - 2\)

6. \(\frac{3}{3} \frac{2}{x} y - 7x - 2 \)

\(-7\frac{3}{x} y - 2\frac{2}{x} + 3x + 1/2 \)

7. \(5pq - 2pq - 3q \)

\(-6pq + 3pq + 5 \)

تمرين: جمع کنيد:

چ: عکس جمعی:

عکس جمعی یک افادات، با گذاشتن علائم مخالف در پیشرفت آن بدست می‌آید.

پذیرش نهم:

عکس جمعی یک پلیتومیل با تعویض کردن تمام حد های آن با علائم مخالف بدست می‌آید.

مثال: برای افادات ذیل در افادات عکس جمعی معادل عبارت‌اند از:

\(-3xy + 4\frac{2}{x} y - 5x - 3\)

\(-3xy + 4\frac{2}{x} y - 5x - 3\) یا \(3xy - 4\frac{2}{x} y + 5x + 3 \)

40
مثال: در افاده عکس، معادل آن باشد، در پایت گنبد:

\[7ab^2 - 6ab - 4b + 8. \]
1. \[- (7ab^2 - 6ab - 4b + 8) \]
2. \[-7ab^2 + 6ab + 4b - 8. \]
درین: معادل و عکس جمع افاده های ذیل را دریافت کنید:

8. \[5x^2 - 4xy^2 - 3xt + 6x - 5 \]
9. \[-3xy + 5xy - 7x + 4y + 2 \]

عملیه تفهیق:
در عملیه تفهیق در پولینومیال، علیه جمع یا اعمال خواندن می‌نمایند، با این تفاوت که در اینجا عکس جمعی (منفی) تفهیق را با شروع منه جمع می‌نمایند. با به مباره دیگر، تمام علائم های آن پولینومیال را که تفهیق می‌شود، تغییر می‌دهند و بعداً با پولینومیال اصلی (تفهیق منه)، جمع می‌نمایند.

مثال 12: تفهیق نامید:

\[(-9x^5 - 3x^2 + 2x^4 + 4) - (2x^5 - x^4 + 4x^3 - 3x^2) \]
\[= (-9x^5 - 3x^2 + 2x^4 + 4) + (-2x^5 + x^4 - 4x^3 + 3x^2) \]
\[= (-9x^5 - x^4 + 2x^4 + 4) + (-2x^5 + x^4 - 4x^3 + 3x^2) \]
\[= -11x^5 + x^4 - 5x^3 + 5x^2 + 4 \]

از مثال‌های قبل چنین مفهوم بیشتریا، که هر گاه قوس را رفع نمایند، (−)
که قبل از قوس موجود باشد بعد از رفع قوسین تمام علائم های داخل قوس را تغییر نمایند.

41
مثال ۱۲: پولینومیل دوم را از پولینومیل اول تفریق نمایید.

نمینم: علامه های پولینومیل دوم را تغییر بدهید بعداً عملیه جمع را اجراء کنید.

\[
\begin{align*}
4x^2y - 6x^2y^2 + x^2y - 5y \\
2x^2y + 3x^2y^2 + 2x^2y^3 + 6y \\
\hline
-7x^2y - 3x^2y^2 + 2x^2y - 11y
\end{align*}
\]

نتیجه: \((11 - 10)\)

تفریق نامید:

۱۰. \(\begin{align*}
(5xy - 7xy + 4x^2 - 3) \\
- (-3xy + 2xy - 2y + 4)
\end{align*}\)

۱۱. \(\begin{align*}
5x^2y - 7x^2y - xy + 4y \\
-2x^2y + 2x^2y - 5x^2y - 5y
\end{align*}\)

تمرین ۲–۱:

الف) درجه هر حد و درجه پولینومیل را تعیین نمایید.

۱. \(\begin{align*}
4x^3 + 3x^2 + 2x - 9
\end{align*}\)

۲. \(\begin{align*}
t - 3t^2 + t + 1
\end{align*}\)

۳. \(\begin{align*}
y + 2y + x - y - 8
\end{align*}\)

۴. \(\begin{align*}
u + 3v^2 - u^2 v - 7
\end{align*}\)

۵. \(\begin{align*}
a + 4a^2 b + 6ab + 4a - 3
\end{align*}\)

۶. \(\begin{align*}
8p^6 + 2p^4 t - 7p^3 t + 5p^2 - 14
\end{align*}\)

ب) جمع نامید.

۷. \(\begin{align*}
5x^2 y - 2xy^2 + 3xy - 5 \\
-2x^2 y - 3xy^2 + 4xy + 7
\end{align*}\)

۸. \(\begin{align*}
6x^2 y - 3xy^2 + 5xy - 3 \\
-4x^2 y - 4xy^2 + 3xy + 8
\end{align*}\)
9. $3p^2 - 5p^2 q + 4pq + 3$
10. $-5pq - 3p^2 q + 6pq + 5$
11. $2x + 3y + z - 7$
12. $2x^2 + 12xy - 11$
13. $7x\sqrt{y} - 3y\sqrt{x} + 1/5$
14. $-2x\sqrt{y} - y\sqrt{x} - 3/5$
15. $5x^2 - 7x^3 + 3x - 6$
16. $-4y^4 + 7y^2 - 2y - 1$
17. $(3x - 2x - x + 2) - (5x^2 - 8x - x + 4)$
18. $(5x + 4xy - 3y + 2) - (9X - 4xy + 2y - 1)$
19. $(4a - 2b - c + 3d) - (-2a + 3b + c - d)$
20. $(5a - 3b - c + 4d) - (-3a + 5b + c - 2d)$
21. $(x^2 - 3x + 4y) - (3x^2 + x - 5x + 3)$
22. $(2x^2 - 5x + 7x) - (5x^2 + 2x - 3x + 5)$
23. $(7x\sqrt{y} - 4y\sqrt{x} + 7.5) - (-2x\sqrt{y} - y\sqrt{x} - 1.6)$
24. $(10x\sqrt{y} - 4y\sqrt{x} + 4/3) - (-3x\sqrt{y} + y\sqrt{x} - 1/3)$
25. \((0.565^2 pq - 2.167pq^2 + 16.02pq - 17.1) \)
\[+ (-1.612^2 pq - 0.312pq^2 - 7.141 pq - 87.044) \]

26. \((5003.2xy^2 + 3102.4 \sqrt{xy} - 5280) \)
\[- (2143.6 xy^{-2} + 6153.8xy - 4141 \sqrt{xy} + 4979.12) \]
ضرب افده‌های الجبری

الک: ضرب در جندی پولی‌نومیل

هر جندی پولی‌نومیل را به‌عنوان پولی‌نومیل دیگر ضرب می‌کنیم و نتیجه را مشابه می‌کنیم.

مثال اول:

\[
4x^2y - 7xy^2 + 3y^3 - 2y^2 + 3x^2\]

حل:

\[
\begin{align*}
\text{اول:} & \quad 4x^2y - 7xy^2 + 3y^3 \\
\text{دوم:} & \quad 2y - 3x \quad y
\end{align*}
\]

\[
8x^2y - 14xy^2 + 6y^3 \quad \rightarrow \quad 2x^2y - 3xy^2
\]

\[
-12x^2y + 21xy^2 - 9x^2y \quad \rightarrow \quad -3x^2y + 3xy^2
\]

\[
6x^2y + 29xy^2 - 23x^2y + 6y^2
\]

باهم ضرب ناپاید:

1. \[(3x^2y - 2xy + 3y)(xy + 2y)\]
2. \[(p^2q + 2pq + 2q)(2p^2q - pq + q)\]

45
نگاشته کنیم به نمونه (بلندی‌نامی در حده) را باهم ضرب می‌نماییم، قاعده‌ی را که توسط تیتر ها در مثال ذیل نشان داده شده بکار می‌بریم. واژه قاعده در ضرب نمودن در دو دارایه گره‌ی نیز صدق می‌کند.

مثال: ضرب نمایید:

2. \((3xy + 2x)(x + 2xy) = 3x^3y + 6x^2y^2 + 2x + 4x^2y\)

3. \((x + \sqrt{2})(y - \sqrt{2}) = xy - \sqrt{2}x + \sqrt{2}y - 2\)

4. \((2x - \sqrt{3})(y + 2) = 2xy + 4x - \sqrt{3}y - 2\sqrt{3}\)

5. \((2x + 3y)(x - 4y) = 2x^2 - 5xy - 12y^2\)

تمرین: ضرب نمایید:

3. \((2xy + 3x)(x^2 - 2)\)

4. \((3x - 2y)(5x + 3y)\)

5. \((2x + \sqrt{2})(3y - \sqrt{2})\)

مربع ساختن بالا نمونه‌ها:

مربع حداقل، جمع یا (منفی) دو چند حاصل ضرب هر دو حد، جمع مربع حد آخر.

مانند:

\[(A + B)^2 = A^2 + 2AB + B^2 \]

\[(A - B)^2 = A^2 - 2AB + B^2 \]

مثال: ضرب نمایید:

6. \((2x + 9y^2)^2 = (2x)^2 + 2(2x)(9y^2) + (9y^2)^2\)

\[= 4x^2 + 36xy^2 + 81y^4 \]
7. \((3x - 5xy)^2 = (3x)^2 - 2(3x)(5xy) + (5xy)^2 \)
\[= 9x^2 - 30x^2y + 25x^2y^2 \]

احتمالات:

در اینجا، مربع مجموعه‌ای به مجموعه‌ی مربع‌های آن نیست:

\[(A + B)^2 \neq A^2 + B^2 \]

6. \((4x - 5y)^2 \)

7. \((2x^2 + 6xy + y^2) \)

حاصل ضرب در نویل که عالمه یکی آن مشت و روی آن منفی باشد چنین

\[(A + B)(A - B) = A^2 - B^2 \]

بدست می‌آید:

پس حاصل ضرب جمع و تفاضل در حد مساوی به تفاصل مربع آنها می‌شود مانند:

\[\frac{(A + B)(A - B)}{A - B} = A + B \]

مثال: ضرب نمایید:

8. \((y + 5)(y - 5) = y^2 - 25 \)

9. \((3x + 2)(3x - 2) = (3x)^2 - 2 \)
\[= 9x^2 - 4 \]

10. \((2x^2 + 3x)(2x^2 - 3x) = (2x^2)^2 - (3x)^2 \)
\[= 4x^4 - 9x^2 \]
11. \((5y + \sqrt{2})(5x - \sqrt{2}) = (5x)^2 - (\sqrt{2})^2\)

\[= 25x^2 - 2\]

12. \((5y + 4 + 3x)(5y + 4 - 3x) = (5y + 4)^2 - (3x)^2\)

\[= 25y^2 + 40y + 16 - 9x^2\]

13. \((3xy^2 + 4y)(-3xy^2 + 4y) = (4y + 3xy^2)(4y - 3xy^2)\)

\[= (4y)^2 - (3xy^2)^2\]

\[= 16y^2 - 9x^4y^4\]

تمرين: از 8 تا 12 حل كنيد:

8. \((4x + 7)(4x - 7)\)

9. \((5x^2y + 2y)(5x^2y - 2y)\)

10. \((4y^2 + \sqrt{3})(4y - \sqrt{3})\)

11. \((2x + 3 + 5y)(2x + 3 - 5y)\)

12. \((-2x^3y^2 + 5t)(2x^3y^2 + 5t)\)

\(\frac{3}{2}
(A + B)^2 = (A + B)(A + B)\)

\[= (A + B)(A^2 + 2AB + B^2)\]

\[= (A + B)^2 + (A + B)2AB + (A + B)^2\]

\[= A^3 + 2A^2B + 2AB^2 + AB^2 + B^3\]

\[= A^3 + 3A^2B + 3AB^2 + B^3\]
نتيجة را چه‌ین شناسه می‌نامیم:

\[(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3 \]

ضررب نامید:

14. \[x^2 + 3x^2 (2) + 3x (2)^2 + 2 = x^2 + 6x + 12 \]

15. \[x^3 + (-2)^3 \]

\[= x^3 - 6x^2 + 12x - 8 \]

16. \[(5m^2 - 4n^3)^3 = (5m^6 + 3(5m^2)(-4n^3) + 3(5m^2)(-4n^3)^2 + (-4n^3)^3 \]

\[= 125m^6 - 300m^4n + 240m^2n^2 - 64n^6 \]

شماره‌ی: از 13 الی 16 حل کنید:

13. \[(x + 1)^3 = ? \]

14. \[(x - 1)^3 = ? \]

15. \[(t - 3b)^3 = ? \]

16. \[(2a^3 - 5b^2)^3 = ? \]

کلار:

اول، افاده‌ای جبری جهت می‌گردد:
عبارت است از جمله‌ی عالمی منشأ مشترک حسرت الجبری. در جزء یک افاده
الجبری نشان داده شده.

مذکور توسط عالمی های جمع یا منشأ از هم جدا شده که بنام(اعداد) یاد می‌شود.
در افاده فوق، \[a^2 \] و \[b^2 \] و \[4c \] و هر کدام یک یک عدد است.

دوم: مثال‌ایت مای دیل در جبر صدق می‌کنند و در علیه های الجبری از آن...
الجبر

\[
(A + B) = A + 3AB + 3B
\]

\[
(A - B)(A - B) = A - B
\]

خلاصة اعمال أربعة الجبر

I. جمع الجبر

هندسياً جمع الجبر را اجراء معنايا، وعكس جمع حساب، نتيجة جمع را بعلامه مثبت يا منفي نشان ميديم. به عبارات ديگر حدهای مثبت و منفی را باهم طوری جمع می‌نماییم که علامه حد پرگذگ در نتیجه جمع ظاهر شود.

\[
-ax + ax + 2ax - 4ax = -2ax
\]

مثال:

جواب:

در مثل فاصله می‌شود که حد 4ax -- آز 2ax پرگذگ است. لذا در نتیجه عملیه جمع، علامه (-) دیده می‌شود. قاعدتاً فاصله در مثال‌ها ذیل نیز مشاهده می‌شود.

\[
2x + 3x = 6x = -x
\]

II. تقاسیم الجبر

تقسیم الجبری مانند عملیه جمع است. در اینجا صرف، علامات های حد های (مفروق) تغییر می‌خورند. يعني اکر مثبت باشند منفی می‌شود و اکر منفی باشد مثبت می‌شود.

مثال:

حاصل تقسیم

\[
\begin{array}{c}
\text{مفرقو منه} \\
\text{مفروق} \\
\text{حاصل تقسیم}
\end{array}
\]

\[
\begin{array}{c}
\underline{ab + ax - y} \\
\underline{y + ab - ax} \\
\underline{2ax - 2y}
\end{array}
\]
در این مثال دیده می‌شود که علامات متفاوت تغییر خورده بعداً، می‌توان عملیات جمع، جابجایی، چربی اجرای شده است.

(مثال دوم) \[2ax + 5yz \]

\[\frac{-4ax - 2yz}{-2ax + 7yz} \]

\[\frac{6ab + 4xy - 6}{6ab + 2xy - 6} \]

جواب (دوم) \[2ax + 7yz \]

\[6ab + 2xy - 6 \]

جواب (سوم) \[2ax + 7yz \]

ضریب الجبری:

در ضرب الجبری، عموماً در طرز عمل به دو بازه در نظر داشته باشیم:

1. ضرب علامات مختلف، ضارب به منفی است.
2. ضرب علامات متفاوت، ضارب به منفی است.

\[(+)(-) = (-) \]

\[(+)(+) = (+) \]

\[(-)(+) = (+) \]

\[(-)(-) = (-) \]

ضریب هر یک از علائم به هر یک از علائم دیگری درآمده پس از محاسبه

\[\frac{a^2}{b^2} = \frac{ab}{ab} \]

\[\frac{b^2}{a^2} = \frac{b}{a} \]

ضریب جسم:

در ضرب جسمی، زمانی ضرب، بازه در طرز عمل را در نظر داشته باشیم:

1. تقسیم علامات با هم مختلف، ضارب به منفی است: \[(-)/(+)/(+) = (-) \]
در عملیه تقسیم الجبری، هر گاه قاعده‌های مقسوم و مقسوم علیه یکسان باشند، در انصورت، صرف توان مقسوم علیه از توان مقسوم تقسیم می‌گردد.

\[
\frac{a^2}{a^1} = a \div a, \quad a \times b^2 \div b = a^2 x
\]

مثال:

احتمال: کل مربع یک یا دویم مساوری به مجموع مربع هر حد نیست.

\[
\left(a + b \right)^2 \neq a^2 + b^2
\]

منابع:

شماره ۴ از

ضرب نامیده:

1. \[2x^2 + 4x + 16 \div 3x - 4 \]
2. \[3y^2 - 3y + 9 \div 2y + 3 \]
3. \[4a^2 b - 2ab + 3b^2 \div ab - 2b + 1 \]
4. \[2x^2 + y^2 - 2xy \div x - 2y^2 - xy \]
5. \[(a - b)(a + ab + b) \]
6. \[(t + 1)(t^2 - t + 1) \]
7. \[(2x + 3y)(2x + y) \]
8. \[(2a - 3b)(2a - b) \]
9. \[(4x^2 - 1/2y)(3x + 1/4y) \]
10. \[(2y^3 + 1/5x)(3y - 1/4x) \]
11. \[(\sqrt{2x^2 - y})(\sqrt{2y - 2y}) \]
12. \[(\sqrt{3} \cdot y^2 - 2)(\sqrt{3y - x}) \]
13. \[(2x + 3y)^2 \]
14. \[(5x + 2y)^2 \]
15. \[(2x^2 - 3y^2)^2 \]
16. \[(4x^2 - 5y^2)^2 \]
17. \[(2x + 3y)^2 \]
18. \[(5x^3 + 2y^2)^2 \]
19. \[(\sqrt{1/2}x - (3/5)y)^2 \]
20. \[((1/4)x - (2/3)y)^2 \]
۲۱. $(0.5x + 0.7y^2)$ ۲۲. $(0.3x + 0.8y^2)$ ۲۳. $(3x - 2y)(3x + 2y)$ ۲۴. $(3x + 5y)(3x - 5y)$ ۲۵. $(x + yz)(x^2 - yz)$ ۲۶. $(2x^2 + 5xy)(2x^2 - 5xy)$ ۲۷. $(3x^2 - \sqrt{2})(3x^2 + \sqrt{2})$ ۲۸. $(5x^2 - \sqrt{3})(5x^2 + \sqrt{3})$ ۲۹. $(2x + 3y + 4)(2x + 3y - 4)$ ۳۰. $(5x + 2y + 3)(5x + 2y - 3)$ ۳۱. $(x + 3y + y^2)(x + 3y - y^2)$ ۳۲. $(2x + y + y^2)(2x^2 + y - y^2)$ ۳۳. $(x + 1)(x - 1)(x + 1)$ ۳۴. $(y - 2)(y + 2)(y^2 + 4)$ ۳۵. $(2x + y)(2x - y)(4x^2 + y^2)$ ۳۶. $(5x + y)(5x - y)(25x^2 + y^2)$ ۳۷. $(0.051x + 0.04y)^2$ ۳۸. $(1.032x - 2.512y)^2$ ۳۹. $(37.86x + 1.42)(65.03x - 27.4)$ ۴۰. $(3.601x - 17.5)(47.105x + 31.23)$ ۴۱. $(y + 5)^3$ ۴۲. $(t - 7)^3$ ۴۳. $\frac{m}{2} - 2n$ ۴۴. $(3t + 4)^3$ ۴۵. $(a + b)(a - b)$ ۴۶. $(t + 4)(t - 7)$ ۴۷. $\frac{n}{2} \cdot \frac{n}{2}$ ۴۸. $\frac{m}{m} \cdot \frac{m}{m} \cdot \frac{m}{m}$ ۴۹. $(x - 1)(x + x + 1)(x + 1)$ ۵۰. $\frac{n}{n} \cdot \frac{n}{n} \cdot \frac{n}{n}$ ۵۱. $(a + b)^2$
51. \((2x - 1)^2 - 1\)
52. \((a + b)(a - b)\) \(\{5 - (a + b)\} \{5 + (a + b)\}\)
53. \((x - b)\) \((a + b)\) \((a - b)\) \((a + b)^2\)
54. \((t^n)\) \((t^n)\) \((t^n)\) \((t^n)\)
55. \((a + b + c)^2\)
56. \((a + b + c)^3\)
57. \((a + b)^4\)
58. \((x - y)(x + 3y + z)^2 + xy + y^2\)
59. \((m + t)(m - 3t + m - m^2 + t)\)
60. \((a - b)(a + a^2 + b + b^3 + a b + a b + a b + b)\)

در سوالات ذیل گنگی ها را تفکیک نمانید، دلیل گنگی را بیان کنید و بعداً جواب صحیح آنرا بدست بیاورید.
61. \((3a + b)^2 = 3a^2 + b^2\)
62. \((2x - 3y)(2x - 3y) = 4x^2 - 9y^2\)
63. \(2x(x + 3) + 4(x - 3) = 2x^2 + 3x + 4x^2 - 3\)(1)
\(= 6x^2 + x\)(2)
64. \((2a - 3b)(3a + 2b) = 6a^2 - 6b^2\)(1)
\(= a - b\)(2)

ضرب نمانید در صورتیکه عدد طبیعی باشد.
65. \((x - y)(x + x^2 + x^3 + \ldots + x^y + x^3 + x^y + y)\)
قضیه باي نومیل

اهداف: شما قادر خواهید بود که با تکمیل کردن این مبحث
توان یک دای با نومیل $(a+b)^n$ را با استفاده از مطلب پاسکال اکتشاف بدهید.
توان یک دای با نومیل $(a+b)^n$ را با استفاده ضریب قبل اکتشاف داده بتوانید.
اصطلاح (فکتوریل) را ارتباط کرده و بتوانید حد مشخص یک دای با نومیل را
قبل از اکتشاف آن تعیین و بنویسید.

الف: اکتشاف باي نومیل با استفاده از مثلث پاسکال
انکشاف باي نومیل دای را كه توان آن n است و n پید داده طبیعی می‌باشد،
تحت مطالعه قرار می‌دهیم:

$$(a+b)^0 = 1$$
$$(a+b)^1 = a+b$$
$$(a+b)^2 = a^2 + 2ab + b^2$$
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

هر اکتشاف فوق یک پولی‌نومیل است، که هر کدام آن دارای اوصاف جداگانه می‌باشد:
1- در هر حد مجموع‌توان ها مساوی به n است.
توان از n شروع شده به صفر ختم می‌شود. حد آخر، ضریب a تعداد. و حد اول ضریب b تعداد. توان b در حد دوم از (1) شروع شده تا به n میرسد. یا توان b از صفر، در حد اول شروع، تا به n میرسد.

2- تعداد حداً از عدد n یک زیاد تر می‌باشد، یا به عباره دیگر، رابطه

\[(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{n}b^n\]

را بیان می‌کند.

ضریب حد اول و حد اول یک می‌باشد. اگر در مثلث پاسکال دقت شود، ضریب های حداً باهم متناظر است. که از یک شروع شده، تا به حساب نصف حد ها بزرگ‌تر شده می‌روند. و بعد از حساب نصف دوازده‌گانه خورده تا شده و دوباره به یک میرسد. فرضی می‌خواهیم اندیشه اینکه اگر اکتشاف بدهم، چون اکتشاف این مطابقت 9 حد می‌شود که در ذیل

\[\begin{array}{cccccc}
8 & 7 & a & b & c & a^2 + ab + c^2 \\
5 & 4 & a & b + c & a^2 & b + c^2 \\
2 & 3 & a & b & a^2 & b + c \\
1 & a & b & a^2 & b + c \\
\end{array}\]

خلافه، اگر ضریب ها را به سه طریقه می‌توان در یکت نماپیم و هر طریقه که سهل تر بوده، آنها بکار برد.

طرح‌های اول: مثلث پاسکال:

ضریب های حداً حداً با اساس مثلث دریافت می‌کنیم:

<table>
<thead>
<tr>
<th>(a+b)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a+b)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a+b)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(a+b)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(a+b)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(a+b)</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
ورتیکه مثلث بالا را اکنون نشان می‌دهیم، اکنون آنها طوری پیش برده می‌شوند که در عدد همگوار افقی راجع به آن در جمعه وسط درنیخت آن مجموع آنها می‌نویسیم که این طریقه در شکل ذیل بخوبی واضح است. \[\binom{\alpha}{\beta} \binom{ab}{c} \]

\[\begin{array}{cccc}
1 & 1 & 1 & \\
1 & 2 & 1 & \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array} \]

در قطار اخیر این مثلث پاسکال ملاحظه می‌شود که:
عدد دوم \[1 + 5 = 6 \]
عدد سوم \[5 + 10 = 15 \]
عدد چهارم \[10 + 10 = 20 \]
عدد پنجم \[10 + 5 = 15 \]
عدد ششم \[5 + 1 = 6 \]

بنابراین \[\binom{a+b}{c} \]

\[(a+b)^5 = a^5 + 5a^4b + 15a^3b^2 + 20a^2b^3 + 15ab^4 + b^5 \]

جهت اکتشاف دادن رابطه: \[(a+b)^8 \]

57
تکمیل نامیم:
برای ضریب های بای نویل: $g^a + b$ مثل ذیل را تکمیل می نمانیم:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

انکشاف رابطة $(a + b)^g$, عبارت است از:

$$(a + b)^g = a + 8a^7 b + 28a^6 b^2 + 56a^5 b^3 + 70a^4 b^4 + 56a^3 b^5 + 28a^2 b^6 + 8ab^7 + b^8$$

تقضیه سایه: انتخاب با نویل g برای هر با نویل $(a + b)^g$ عدد طبیعی n داریم:

$$(a + b)^g = c a b^g + c a b^{g-1} + c a b^{g-2} + \ldots + c a b^1 + c a b^0$$

در صورتی که $c = c = 1$ ام قطار، مثل پاسکال $\binom{n+1}{2}$ باشد.

باشد.
در بن: با استفاده از مثلث پاسکال، مطابقت های دیل را اكتشاف بدهید.

\[(a+b)^2 = 2 \cdot (x-y)^3 \]

مثال اول:

اكتشاف بدهید:

\[(u-v) \cdot a = u, b = -v, n = 5 \]

جهت دریافت کردن ضریب ها یک فقر ششم را بکار می‌بریم:

\[1, 5, 10, 10, 5, 1 \]

\[(u-v) = (u) + 5(u)(-v) + 10(u)(-v)^2 + 10(u)(-v)^3 + 5(u)(-v)^4 \]

\[+ 5(u)(-v) + (-v)^5 \]

\[= u - 5uv + 10u^2v - 10u^3v + 5uv^4 - v^5 \]

قطاره مثلث پاسکال

مثال دوم:

اكتشاف بدهید:

\[a = 2t, b = 3/t, n = 6 \]

چون توان 6 است، لذا:

\[1, 6, 15, 20, 15, 6, 1 \]

قطار هفتم مثلث پاسکال

\[(2t + 3/t)^6 = (2t)^6 + 6(2t)(3/t)^5 + 15(2t)^4(3/t)^3 + 20(2t)^3(3/t)^2 + 15(2t)^2(3/t) + 6(2t)(3/t) + (3/t)^6 \]

\[= 64t^6 + 6(32t^5)(3/t) + 15(16t^4)(9/t^2) + 20(8t^3)(27/t^3) + 15(4t^2)(81/t^4) + 6(2t)(243/t^5) + 729/t^6 \]

\[= 64t^6 + 576t^9 + 4320 + 4860t^2 + 2916t^4 + 729t^6 \]
طرح: انکشاف بدهید: \(\frac{7}{(2t+1/t)} = ? \)

طرح: انکشاف بدهید: استفاده از ضریب قبل آن:

یک نقص که در طریقه مثلث پاسکال به نظر میرسد، اینست که: وقتی یک قطار معین را در مثلث تکمیل می‌باشیم، مجبور هستیم تا نخست قطار های قبلی تکمیل نماییم. یا به عبارت دیگر قطار های بعدی را قبل از تکمیل کردن قطار های قبلی معلوم کرده نمیتوانیم. چهار جهت از بین بردن این مشکل در طریقه جدید معرفی می‌گردد:

\[
(a+b)(a+b) = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5
\]

ششم، پنجم، چهارم، سوم، دوم، اول یا هر دو

برای در یافتن ضریب بعدی، ضریب های قبلی رادر نظر می‌گیریم مانند:

ضریب حد اول (1) است.

ضریب حد دوم عبارت از حاصل ضرب ضریب حد دویل (2) ضریب توان حد

در حد قبل تقسیم بر (1) یا 5 = 1/5

ضریب حد سوم: عبارت از حاصل ضرب، ضریب قبلی (3) ضریب توان

حرف a در حد قبلی == (4) تقسیم بر (2). یا 10 = 2/4

ضریب حد چهارم: عبارت است از حاصل ضرب ضریب قبلی (5) ضریب توان

حرف a در حد قبلی == (3) تقسیم بر (3). یا 10 = 3/3

ضریب حد پنجم: عبارت است از حاصل ضرب ضریب قبلی (6) ضریب توان

حرف a در حد قبلی == (4) تقسیم بر (4). یا 5 = 4/4

ضریب حد ششم: عبارت است از حاصل ضرب ضریب قبلی (7) ضریب توان

حرف a در حد قبلی == (1) تقسیم بر (5). یا 1 = 5/5

\(\frac{7}{(2t+1/t)} = ? \)
مراحل فوق را چنین خلاصه می‌نماییم:
ضریب حد nام (nth) ضریب های n - 1 اکر باشد.
\[
\begin{align*}
AB & \quad (1) \\
C & \quad (2)
\end{align*}
\]
که ضریب قبل است و B در حد a (حد a) توان (حد a) عدد n که n = n - 1 است. که عبارت از C عبارت از (n - m) می‌باشد.
مثال سوم: انتخاب (m + n) رادر دیل مطالعه‌ناپایید.
\[
\begin{align*}
\frac{m}{n} & = 10 m n \quad \text{عدد دوم}
\end{align*}
\]
1
\[
\begin{align*}
\frac{g}{h} & = 9 \quad \text{عدد سوم}
\end{align*}
\]
2
\[
\begin{align*}
\frac{g}{h} & = 2 \quad \text{عدد چهارم}
\end{align*}
\]
3
\[
\begin{align*}
\frac{g}{h} & = 2 \quad \text{عدد پنجم}
\end{align*}
\]
4
\[
\begin{align*}
\frac{g}{h} & = 5 \quad \text{عدد ششم}
\end{align*}
\]
5
نتیجه اکتشاف:

\[(m + n) = m + 10m + n + 45m + 120m + 210m + 252m + n\]

\[+ 210m + n + 120m + n + 45m + 10mn + n\]

\[\text{سوال: } \frac{9}{9} = ?\]

طبقه سوم: اکتشاف با استفاده از عددونویسی

فیکتوریل

فرض آن، در مطابقت \((a + b)\), ما به هشتم را در یک مینیمیمیم؟

به اساس طریقه قابل میتوان این حد (هشتم) را دریافت نمود، ولی، بسیار طولانی

خواهد بود. درینجا، ما طریقه را تحت غور میگیریم که بدون اکتشاف با نیومیل حد

مطلب بادست بیاوریم. این طریقه در ریاضیات غالب (در آیینه) اهمیت دارد.

جهت مطالعه این طریقه در اینجا لازم است که مفهوم 'فیکتوریل' را معرفی

کنیم مانند:

\[6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]

قاعده عمومی جهت فیکتوریل چنین خلاصه می‌شود:

\[n! = n(n-1)(n-2)(n-3)(n-4)\ldots 3 \times 2 \times 1\]

به (1) آخر میشود و به n شروع می‌گردد.

مثال ها:

\[7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040\]

\[6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720\]

\[5! = 5 \times 4 \times 3 \times 2 \times 1 = 120\]
4! = 4 \times 3 \times 2 \times 1 = 24
3! = 3 \times 2 \times 1 = 6
2! = 2 \times 1 = 2
1! = 1

درین تعریف ها در نظر داشته باشیم که $1! = 1$ و همچنین $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$.

یا طور ذیل خلاصه می‌شود:
برای هر عدد طبیعی n ما داریم:

$n! = n(n-1)!$

خارج قسمت فیکتوریل ذیل را ساده نمایید:

$$8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 8 \times 7 \times 6 \times 5 \times 3 \times 2 \times 1 = 8 \times 7 \times 6 \times 5 \times 3 \times 2 \times 1 = 8 \times 7 = 56$$

مثال پنجم:

$$8! = 8 \times 7 \times 6 \times 5! = 8 \times 7 \times 6 \times 5 \times 3 \times 2 \times 1 = 8 \times 7 \times 6 \times 5 \times 3 \times 2 \times 1 = 8 \times 7 = 56$$
<table>
<thead>
<tr>
<th>رقم</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$8! = ?$</td>
</tr>
<tr>
<td>7</td>
<td>$9! = ?$</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{9!}{5!4!} = ?$</td>
</tr>
<tr>
<td>9</td>
<td>$\frac{8!}{6!2!} = ?$</td>
</tr>
<tr>
<td>10</td>
<td>$\frac{7!}{6!1!} = ?$</td>
</tr>
<tr>
<td>11</td>
<td>$\frac{4!}{4!0!} = ?$</td>
</tr>
</tbody>
</table>

مثال ششم:

$$\frac{7!}{2!5!} = ?$$

$$\frac{7!}{2!5!} = \frac{7 \times 6 \times 5!}{(2 \times 1) \times 5!} = \frac{7 \times 6}{2 \times 1} = 21$$

مثال هفتم:

$$\frac{9!}{8!1!} = ?$$

$$\frac{9!}{8!1!} = \frac{9 \times 8!}{8! \times 1!} = 9$$

$$\frac{6!}{6!0!} = ?$$

$$\frac{6!}{6!0!} = \frac{6!}{6! \times 1} = 1$$

ضریب تای نومیل را از طریق فیکتوریل چنین دریافت کرده میتوانیم:

ضریب حد $(a+b)^n$ در انتخاب r از n مساوی است به:

$${n \choose r} = \frac{n!}{(n-r)!r!}$$
توان یا نرمال است n.

نیمر عدد (حد چندم) r.

و سیمول $(\binom{n}{r})$ که مخفف نیکِتُریل خارج قسمت فوق می‌باشد برای کسر فوق

معموم می‌باشد،

یا به عبارت دیگر:

$$\binom{n}{r} = \frac{n!}{(n-r)! r!}$$

این فرمول برای دیفراف ضریب حذ بکار برده می‌شود.

مثال هشت:

$$\binom{9}{6} = ?$$

ارزیابی نامید:

$n = 9$
$r = 6$

$$\binom{9}{6} = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7 \times 6!}{3 \times 2 \times 1 \times (3 \times 2 \times 1)!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84$$

مثال هشتم:

$$\binom{7}{2} = ?$$

ارزیابی شانید:

$n = 7$
$r = 1$

$$\binom{7}{2} = \frac{7!}{6!1!} = \frac{7 \times 6!}{6! 1!} = \frac{7 \times 6!}{6!} = 7$$

نوت: $(\binom{n}{r})$ به‌عنوان $\binom{n}{r} \frac{n!}{r! (n-r)!}$ نیست.

تمرین: ارزیابی نامید:

$$\binom{6}{0}, \binom{5}{5}, \binom{6}{1}, \binom{9}{0}, \binom{8}{1}, \binom{7}{1}$$

$$1, 12, 16, 15, 11$$
اکثریت صدر با نمی‌شود.
برای هر پای نمی‌شود $a + b$, و هر عدد طبیعی n, رابطه ذیل صدق می‌کند.

$$n \binom{n}{a + b} = \binom{n}{0} a + \binom{n}{1} a b + \binom{n}{2} a^2 b + \cdots + \binom{n}{n} b.$$

مثال 10:

انکشاف بدهید.

$$(2x + 3)^4 = ?$$

نوت کنید $a = 2x$, $b = 3$, $n = 4$

$$
(2x + 3)^4 = \binom{4}{0}(2x)^4 + \binom{4}{1}(2x)^3(3) + \binom{4}{2}(2x)^2(3)^2 + \binom{4}{3}(2x)(3)^3 + \binom{4}{4}(3)^4
$$

$$= \frac{4!}{4!0!} (16x^4) + \frac{4!}{3!1!} (8x^3)(3) + \frac{4!}{2!2!} (4x^2)(9)
$$

$$= 16x^4 + 96x^3 + 216x^2 + 216x + 81.$$

مثال 11:

انکشاف بدهید:

$$(x^2 - 2y)^5 = \binom{5}{0}(x)^5 + \binom{5}{1}(x)^4(-2y) + \binom{5}{2}(x)^3(-2y)^2 + \binom{5}{3}(x)^2(-2y)^3 + \binom{5}{4}x(-2y)^4 + \binom{5}{5}(-2y)^5
$$

$$= \frac{5!}{5!0!} (x)^5 + \frac{5!}{4!1!} (x)(-2y) + \frac{5!}{3!2!} x(4y^2)
$$
+ 5! \frac{4}{(x)(-8\ y)} + \frac{5!}{2!\ 3!} \frac{2}{(x)(16\ y)} + \frac{5!}{5!} \frac{(-32\ y)}{0!\ 5!} \\
= x - 10x\ y + 40x\ y^2 - 80x\ y^2 + 80x\ y^4 - 32\ y^5.

تمرین: اکتشاف بدهید:
16. \(\frac{2}{(x+5b)} \)
18. \(\frac{3a+4b}{(3a+4b)} \)
17. \(\frac{3}{(x-y)} \)
19. \(\frac{10}{(3x-2)} \)

حد پنجم پای نویمی را در یافته نامیمید.
8. \(\frac{3a+4b}{(3a+4b)} \)

حدنهم پای نویمی را در یافته نامیمید.
9. \(\frac{10}{(3x-2)} \)

فرض آنها: میخواهیم حد میان اکتشاف یک بای نویمی را در معلوم نامیمید. با استفاده از

فرمول ذیل این حسابی حد مطلوب را بدین آن که مشابه حساب نامیمید یکدیکی.

\[
\lim_{r \to \infty} (a+b) \left(\frac{r+1}{r} \right)^{\frac{n}{r}}
\]

مثال 12:
حد پنجم پای نویمی رادر یافته نامیمید:

\[
(2x-5y) = (r+1)
\]

\[
5 = 4 + 1, a = 2x, b = -5y, n = 6.
\]

\[
5 = r + 1
\]
در حذف چهارم عبارت است از: \[r = 4 \]

\[
\binom{6}{4} \frac{6}{4} \frac{6!}{(2x)^4 (-5y)^4} = \frac{6!}{2! 4!} (2x)^2 (-5y)^4 = 37,500 x^2 y^4
\]

حد پنجم، حد هشتم را در یافته کنید:

\[
\binom{10}{7} (2 - x)^7 (3x) 3 = \frac{10!}{7! 3!} (2 - x)^7 3x = -414,720 x^3
\]

تمرين 5.1

انکشاف بدهید.

1. \((m + n)^5 \)
2. \((a - b)^4 \)
3. \((x - y)^6 \)
4. \((p + q)^7 \)
5. \((x - 3y)^5 \)
6. \((3c - d)^7 \)
7. \((3c - d)^6 \)
8. \((t^2 + 2)^6 \)
9. \((x - y)^3 \)
10. \((x - y)^5 \)
11. \([(1/x) + y]^7 \)
12. \((2s - 3t)^3 \)
13. \([a - (2/a)]^5 \)
14. \([2x + (1/x)]^9 \)
15. \((1 - 1)^n \)
16. \((1 + 3)^n \) 17. \(\sqrt[4]{3^4} - 1 \) 18. \(\sqrt[6]{5 + 1} \)

ارزیابی کنید؟

19. \(6! \) 20. \(4! \) 21. \(1! \)

22. \(0! \) 23. \(\frac{5}{2} \) 24. \(\frac{7}{1} \)

25. \(\frac{9}{4} \) 26. \(\frac{14}{2} \)

حد های خواسته شده‌ای را در یافته‌اند.

27. \((a + b)^6 \) 28. \((x + y)^7 \) 29. \((a - 2)^{14} \) 30. \((x - 3)^{12} \) 31. \(2x^3 - \sqrt[10]{y}^8 \) 32. \(\frac{1}{b + b/3} \)

حد وسطی (33) را در یافته‌اند.

33. \(2u - 3^6 \) 10

در حد وسطی (34) انکشاف این باین نتیجه‌ای را در یافته‌اند.

34. \((\sqrt{x} + \sqrt{3})^5 \)

انکشاف بدهید:

35. \(x^2 + \frac{4}{x} \) 36. \([(1/\sqrt{x}) - \sqrt{x}]^6 \)

37. \((\sqrt{2} + 1)^6 - (\sqrt{2} - 1)^6 \) 38. \((1 - \sqrt{2})^4 + (1 + \sqrt{2})^4 \)
39. \(n \choose r \) = \(n \choose n-r \)

برای عدد مکمل \(n \) و \(r \) ثبوت کنید.

40. \(\frac{n}{r} \) = \(\frac{n-1}{r-1} \)

\(\sum_{r=0}^{n} \frac{n}{r} \) = \(\sum_{r=1}^{n} \frac{n-1}{r-1} \)

41. از اکتشاف رابطه \((x/3)^{1/2} - (2/3x^{2/3}) \) آن حد را در \(x = 1 \) پیدا کنید. که شامل \(x \) نباشد.

42. حد سطح اکتشاف باع نومیل را معلوم کنید.

\(x^{2} - 6y^{2} \) \(x^{2} - 4y^{2} \)

43. از \(\sum_{a}^{5} \) نسبت حد چارم و سوم را در \(x \) پیدا کنید.

44. از \(\sum_{a}^{7} \) حد را در \(y \) پیدا کنید که \(x^{1/2} \) در آن شامل باشد.

45. درجه این افادة چند است؟ \((x^{3} + x^{5}) \)
(Factoring)

فیکتوئیز

اهداکر:
با تکمیل کردن این بخش، شما قادر خواهید بود که:
- سبک فیکتوریز اما، را، کا، فیکتور می‌شوند در یافته‌‌نامنیبید.
- شش، نوع، طرح، عمل، فیکتوریز، را، علی، نامید.

الف: فیکتوریز پولینومیل‌ها:
روتیکه یک پولینومیال و فیکتوری می‌باشیم، در حقیقت، عملی، تجزیه، ضرب، را، اجراء، می‌نماییم. فیکتوریز، به، مفهوم، در، دایره‌ای، افادة، های، مداوم، یک، افادة، است، به، حالت، ضرب، فیکتوریز، مهارت، مهم، جبری، می‌باشد.

حَجَّاح‌های ضریب‌های مشترک:
روتیکه یک، افادة، را، فیکتوری‌ی، نامیبید، باید، نخست، ضریبی، را، اجتناب، نماییم، که، بین.

۱.
\[4x^2 + 8 = 4(x^2 + 2) \]
فیکتور، نامید.

۲.
\[12x^2 y - 20x^3 y = 4x^2 y (3 - 5x) \]

۳.
\[7x \sqrt{y} + 14x^2 \sqrt{y} - 21\sqrt{y} = 7\sqrt{y} (x + 2x^2 - 3) \]

مثال اول:
مثال صومع:

4. \[(a - b)(x + 5) + (a - b)(x - \frac{2}{y})\]
 \[= (a - b)[(x + 5) + (x - \frac{2}{y})] = (a - b)(2x + 5 - \frac{2}{y})\]

5. \[\frac{2}{y} + 3y + 4y + 12 = y(y + 3) + 4(y + 3)\]
 \[= (y + 4)(y + 3)\]

مثال سوم:

6. \[ax^2 + ay + bx + by = a(x + y) + b(x + y) = (x + y)(a + b)\]

تفاوت مربع ها:

\[(A + B)(A - B) = A^2 - B^2\]

7. \[\frac{2}{x} - 9 = (x + 3)(x - 3)\]

8. \[\frac{2}{y} - 2 = (y + \sqrt{2})(y - \sqrt{2})\]

9. \[9a^2 - 16x^2 = (3a)^2 - (4x)^2 = (3a + 4x)(3a - 4x)\]

10. \[9y^4 - 9x^4 = 9(y^2 - x^2)\]
 \[= 9(y^2 + 2)(y^2 - 2)\]
 \[= 9(y^2 + 2)(y + x)(y - x)\]

توضيح: 1 --- 7 فيكتور كنيد:

1. \[20x^3 + 12x^2 y\]
2. \[(p + q)(x + 2) + (p + q)(x + y)\]
3. \[4x^2 + 20x - 3x - 15\]
4. \[\frac{x^2}{x} - 16\]
<table>
<thead>
<tr>
<th>عدد</th>
<th>معادله</th>
<th>عدد</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>$25y^4 - 16x^2$</td>
<td>6.</td>
<td>$2y^4 - 32x^4$</td>
</tr>
<tr>
<td>7.</td>
<td>$\frac{2}{x} - 3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تربیت نامه‌ها و ماتناج‌ها می‌توانند آنها را به یکی از تربیت‌های معکوس بگیرند.

$$\begin{align*}
A + 2AB + B &= (A + B)^2 \\
A - 2AB + B &= (A - B)^2
\end{align*}$$

درای نومیل یک میخوایم آن را به یکی از نامه‌های تربیت‌های معکوس بگیرد.

مثلاً:

<table>
<thead>
<tr>
<th>عدد</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>$x - 10x + 25 = (x - 5)^2$</td>
</tr>
<tr>
<td>12.</td>
<td>$16y^2 + 56y + 49 = (4y + 7)^2$</td>
</tr>
<tr>
<td>13.</td>
<td>$-4y^2 - 144y^6 + 48y^5 = -4y^2 (1 + 36y^6 - 12y^3)$</td>
</tr>
</tbody>
</table>

$$= -4y^2 (1 - 12y^3 + 36y^6)$$

$$= -4y^2 (1 - 6y^3)^2$$

تمرین: 8 از 10 نیک‌گرد کنید:

<table>
<thead>
<tr>
<th>عدد</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>$9y^2 - 30y + 25$</td>
</tr>
<tr>
<td>9.</td>
<td>$16x^2 + 72xy + 81y^2$</td>
</tr>
<tr>
<td>10.</td>
<td>$12x^4 + 60x^2y^2 - 75y^4$</td>
</tr>
</tbody>
</table>
تراب نمیلیها به شکل مربع محکم تکنیک شده نمیتواند.

بعضی ترای نمیل‌ها به شکل محکم تبدیل شده نمیتواند، میتوان آنها را به دو

یک نمیل فیکتور نمود، و جهت این فیکتورینگ فرمول دیل را بکار می‌بریم.

\[ax^2 + (ad + bc) x + bd = (ax + b)(cx + d) \]

مثال 14:

فیکتور نمایید: \[x^2 + 7x + 12 \]

حل: نخست در قوس را در حالت ضرب چندین می‌نویسیم:

\[
\begin{pmatrix}
(x + 3) \\
(x + 4)
\end{pmatrix}
\]

حاصل ضرب جهای اول قوس‌ها، حد اول معادله، و حاصل ضرب حد های دومی قوس باید حد آخر معادله‌اول بدهد. و مجموع الجبری حاصل ضرب جهای اول و دوم حد متوسط معادله را بدهد.

\[(x + 3)(x + 4) = x^2 + 7x + 12 \]

مثال 15:

فیکتور نمایید:

طبقه اول:

ما آن باای نمیل \(ax + b \) و \(cx + d \) را جستجو می‌نماییم که حاصل ضرب حد

های اول آن \(3x^2 \) را بدهد، و حاصل ضرب حد های آخری عدد 8 را بدهد.

جواب این است:

طبقه دوم:

\[3x^2 - 10x - 8 = 3x^2 - 12x + 2x - 8 \]

\[= 3x(x - 4) + 2(x - 4) \]

\[= (3x + 2)(x - 4). \]
مجموع‌یا تغابن‌های مکعب‌ها:

جهت نیکوتر کردن مجموع‌یا تغابن‌های مکعب‌ها، فرمول‌های ذیل را بکار می‌بریم:

\[
\begin{align*}
3^3 A + B &= (A + B) (A^2 - AB + B^2) \\
3^3 A - B &= (A - B) (A^2 + AB + B^2)
\end{align*}
\]

مثال 16:

نیکوتر نمایید.

\[
\begin{align*}
3^3 x - 27 &= ? \\
3^3 x - 27 &= 3^3 - x
\end{align*}
\]

در یک قوس جذر مکعب را انتخاب و قوس دوم را به ترتیب ذیل انتخاب می‌دهیم:

جهت خانه یک قوس دوم قامه دیل را در نظر می‌گیریم:

\[
(x - 3)^2
\]

\[
(3 - x)^2
\]

ملاین‌ترین راه:

1) حد اول را مربع سازیم.

2) هر دو حد را ضرب کرده علیه آنرا دفعه بدهید.

3) حد اخیر را مربع سازی می‌کنیم.

\[
\begin{align*}
&\frac{2}{x} + 3x + 9 \\
&\frac{2}{x} + 3x + 9
\end{align*}
\]

که دیگر نیکتور نمی‌شود.

تمرین‌های 11 تا 18 نیکتور کنید:

11. \(\frac{2}{x} + 5x - 14\)
12. \(3x^2 + 5x + 2\)
13. \(6x^2 y - 9x^2 \frac{y^2}{3} - 60\)
14. $3x - 8$
15. $64 - 3^t$
16. $27x^3 + y^3$
17. $8m + 125t^3$
18. $128y^7 - 250x^6y$

مثال 17:

فیکتور ناپاید:

$125x^3 + y^3 = ?$

$125x^3 + y^3 = (5x^3) + y^3$

برای در یافتن قوس دوم $(5x + y)(5x + y)\ldots(5x + y)$

(1) حد اول را مربع مینماییم.

(2) هر دو حد را ضرب نموده علامه را تنیز میدهیم.

(3) حد آخر را مربع مینماییم.

$\frac{25x^2}{y^2} - 5xy + \frac{2y}{x}$

جواب

مثال 18:

$16x^7 + 54x^7$

$2xy(8x^6 + 27y^6) = 2xy\{\{2x^3\} + (3y^2)^3\}$

$= 2xy(2^2 + 3^2)(4x^4 - 6x^2y^2 + 9y^4)$
النماذج:

1. $18a^2 b - 15a^2 b$
2. $4^2 x y + 12xy^2$
3. $a (b - 2) + c (b - 2)$
4. $a (x - 3) - 2 (x - 3)$
5. $\frac{2}{x} + 3x + 6x + 18$
6. $3\frac{2}{x} + \frac{2}{x} - 18x - 6$
7. $9x - 25$
8. $16x^2 - 9$
9. $4xy^4 - 4xz^2$
10. $5x^4 - 5xz^4$
11. $\frac{2}{y} - 6y + 9$
12. $\frac{2}{x} + 8x + 16$
13. $1 - 8x + 16x^2$
14. $1 + 10x + 25x^2$
15. $4x^2 - 5$
16. $16x^2 - 7$
17. $\frac{2}{x^2} y - 14xy + 49y$
18. $\frac{2}{x^2} y - 16x + 64$
19. $4ax^2 + 30ax + 56a$
20. $21x^2 y + 2xy - 8y$
21. $\frac{2}{a} + 2ab + b - c$
22. $\frac{2}{x} - 2xy + \frac{2}{y} - \frac{2}{z}$
23. $\frac{2}{x} + 2xy + \frac{2}{y} - \frac{2}{a} - 2ab - b$
24. $\frac{2}{r} + 2rs + \frac{2}{s} - t + 2tv - \frac{2}{v}$
25. $5y^4 - 80x^4$
26. $\frac{4}{6y} - 96x^9$
27. $\frac{3}{x} + 8$
28. $\frac{3}{y} - 64$
29. $\frac{3x - \frac{3}{8}}{8}$
30. $\frac{5y^3 + \frac{5}{27}}{27}$
31. $x + 0.001$
32. $\frac{3}{y} - 0.125$
33. $3z - 24$
34. $4t^3 + 108$
35. $a^6 - 6$
36. $64m + 6$
37. $16a^7 b + 54ab^7$
38. $24a^2 x - 375a^8 x$
39. $\frac{2}{x} - 17.6$
40. $\frac{2}{x} - 8.03$
41. $37x^2 - 14.5y^2$
42. $1.96x^2 - 17.4y^2$

(کمک: نخست ضرب مشترک
خارج قوس بگیرید.)

(کمک: نخست ضرب 1.96 را
37 را خارج قوس بگیرید.)

43. $(x + h)^3 - x$
44. $(x + 0.01)^2 - x$
45. $\frac{4}{y} - 84 + 5y^2$
46. $11x^2 + 4x - 80$
47. $\frac{8}{y} + \frac{2}{49} + \frac{2}{7} y$
48. $\frac{2}{x} + \frac{3}{5} x - \frac{4}{25}$
49. $\frac{2}{t} - 0.27 + 0.6t$
50. $0.4m - 0.05 + m$
51. $\frac{2}{x^2} + 5x - 24$
52. $4x^4 - 4x^2 - 3$
53. $\frac{2}{x} + ax + bx + ab$
54. $bd^2 + ady + bc + ac$
55. $\frac{1}{t^2} - \frac{2}{t} + \frac{4}{5} + \frac{25}{4}$
56. $\frac{4}{27} + \frac{r}{9} + \frac{5}{12} rs + \frac{1}{3} s - \frac{1}{3} rs$
57. \(25^3 - (\frac{3}{x} - 2x^2 + 1)\)
58. \(4x^2 + 12x + 10x + 30\)
59. \(3y^2 - 24y^2\)
60. \(\frac{6a}{x} - \beta\)
61. \((y - 1)^4 - (y - 1)^2\)
62. \(\frac{6}{x} - 2x + \frac{4}{x} - \frac{2}{x} + 2x - 1\)
افاده های کسری

به تکمیل کردن این بحث شما قادر خواهید شدکه:

افاده های کسری را ساده نمایید.
افاده های کسری راضرب، تقسیم و ساده نمایید.
افاده های کسری را جمع، تفیق و ساده نمایید.
افاده های کسرالکسر راساده نمایید.

افاده های ذیل بنام افاده های کسری یاد می‌شوند.

\[\frac{8}{5} , \frac{2}{x-3} , \frac{3x^2+5\sqrt{x-2}}{x-2} , \frac{x-3}{x+y} , \frac{2}{x-x-2} \]

افاده های کسری، در حقیقت از عملیه تقسیم نماینده گی می‌باشد. تعیین کردن بعضی اعداد که مخرج را صفر بسازد نتیجه نیست، زیرا عدد تقسیم به صفر لاپتاها می‌شود.

مثال: در افاده های کسری ذیل مخرج کسر برای دولقت صفر خواهد شد و آن درتیست را چنین دریافت می‌نماییم.

\[\frac{x-3}{x-3} , \frac{2}{x-x-2}=0, (x+1)(x-2)=0 \]

\[(x+1)=0 \quad (x-2)=0 \]

\[x=-1 \quad x=2 \]
مخرج کسر را مساوات به صفر قرار می‌دهیم، بعداً آنا چنین محاسبه مینماییم:

یعنی قائم (1-)، و (2) برای قائم x در انفاد فوق جانز نیست، دیگر تمام اعداد حقیقی x غیر از (1-) و 2 اعداد جانز اند.

تمرین: اعداد تمیزی جایی را در رابطه ذیل در یافت نمانید:

1. \[\frac{\frac{2}{x} - 9}{x - 3} \]
2. \[\frac{\frac{3}{x} - \frac{x^2}{2}}{\frac{x}{x} + 7x + 12} \]

ضرب و تقسیم اعداد هر کسر:
هنگامیکه در انفاد کسری را با هم ضرب مینماییم، صورت یکی با صورت دویی، و مخرج یکی با مخرج دویی ضرب می‌شود. اما وقتی که کسر را بالایی کسر دویی تقسیم نماییم، کسر صورت با معکوس کسر مخرج ضرب می‌شود (کسرالکسر).

مثال اول:
ضرب نماییم.

\[\frac{x+3}{y-4} \times \frac{\frac{3}{x}}{y+5} = \frac{(x+3)\frac{3}{x}}{(y-4)(y+5)} = \frac{\frac{4x}{x+3x}}{y+y-20} \]

مثال دوم:
تقسیم نمایید:

\[\frac{x-2}{y+1} \div \frac{x+5}{x-3} = \frac{x-2}{x+1} \times \frac{x-3}{x+5} = \frac{(x-2)(x-3)}{(x+1)(x+5)} \]

\[\frac{\frac{2}{x} - 5x + 6}{x + 6x + 5} \]

81
تمرين:
ضرب ناميد:

3. \[
\frac{x + y}{2x^2 - 1} \times \frac{x + y}{7x}
\]

 تقسيم ناميد:

4. \[
\frac{x - 2}{x + 2} \div \frac{x + 2}{x + 4}
\]

ضرب ناميد:

5. \[
\frac{x + 2}{x - 5} \times \frac{x + 3}{x + 3}
\]

ساده ساده اتاده هال كسری:
در عملی ساده ساده اتاده های کسری، نخست صورت و مخرج را طوری فیکتور می‌مانیم که یکی بالای دیگر اختصار شده بتواند.

مثال:

مطلب 3:
ضرب نامید:

\[
\frac{y + 4}{y - 3} \times \frac{y - 2}{y - 2} = \frac{(y + 4)(y - 2)}{(y - 3)(y - 2)} = \frac{2y + 2y - 8}{y - 5y + 6} = \frac{y + 4}{y - 3}
\]
مثال 4:

ساده سازی:

\[
\frac{15 \frac{x^2}{y^2}}{20 \frac{x^2}{y^2} \times \frac{5x^2}{y^2}} = \frac{5x^2}{y^2} \times \frac{3xy}{4}
\]

ضریب (1) را حاصل نامید.

تمرین:

ساده نامید، تعیین های فاصله را درون افاده ها نام بپریم و افاده ها را ساده کنید.

6. \[
\frac{6x + 4x}{2x^2 + 4x}
\]

7. \[
\frac{\frac{2y + 3y + 2}{y - 2}}
\]

صاروت و ساختمان را فیکتور نامید.

\[
\frac{x^2}{x - 1} = \frac{(x - 1)(x + 1)}{2x + 1} = \frac{x + 1}{x - 1} = \frac{x + 1}{2x + 1}
\]

\[
\frac{\frac{2}{x - 1}}{\frac{2x}{x - 1}} = \frac{(x - 1)(x + 1)}{(2x + 1)(x - 1)} = \frac{x + 1}{(x + 1)(2x + 1)}
\]

\[
= \frac{(x + 1)}{(2x + 1)}
\]
ضررب، تقسيم و ساده ساختن از اعداد هلال کسره:

مثال 4:
ضرب نموده و ساده سازید:

\[
\frac{x + 2}{x - 2} \cdot \frac{\frac{2}{x} - 4}{\frac{2}{x} + x - 2} = \frac{(x + 2)(\frac{2}{x} - 4)}{(x - 2)(\frac{2}{x} + x - 2)}
\]

ضرب کردن، فیکتور کردن

\[
\frac{(x + 2)(x + 2)(x - 2)}{(x - 2)(x + 2)(x - 1)}
\]

ضریب (1) را خارج نمایید.

\[
\frac{(x + 2)(x - 2)}{(x + 2)(x - 2)} = \frac{x + 2}{x - 1} = \frac{x + 2}{x - 1}
\]

مثال 7:

\[
\frac{\frac{2}{a - 1}}{\frac{2}{a - 2a + 1}} = \frac{\frac{2}{a - 1}}{\frac{a + 1}{a + 1}} = \frac{2}{a - 1} \cdot \frac{a + 1}{\frac{2}{a - 2a + 1}}
\]

\[
\frac{(a + 1)(a - 1)(a + 1)}{(a + 1)(a - 1)(a - 1)} = \frac{a + 1}{a - 1}
\]

تمرین:

تقسیم نموده ساده سازید:

9. \[
\frac{\frac{2}{a - b}}{\frac{2}{a - 2ab + b}}
\]

\[
\frac{ab}{2a^2 b^2}
\]
ضرب نمونه ساده سازی:
\[
\frac{2}{x - 2xy + y} \times \frac{3x + 3y}{x + y} = \frac{\frac{2}{x} - \frac{2}{y}}{\frac{x}{x} + \frac{y}{y}}
\]

جمع و تفیق افکاده‌های طسقی:
هر گاه در افکاده‌های کسری دارای مین مخرج باشند، در آن‌صورت یکی از مخرج‌ها را بقسم مخرج مشترک نگاه کرده، صورت هارا با هم جمع یا تفیق مینماییم و اگر دارای مخرج مشترک (LCD) آنها را در پایتکرده بعداً عملی جمع یا تفیق را اجرای مینماییم.

مثال 8:
جعب توابع:
\[
\frac{3x^2 + 4x - 8}{x + 2y} + \frac{-5x^2 + 5x + 7}{x + 2y} = \frac{-2x^2 + 9x - 1}{x + 2y}
\]

مثال 9:
\[
\frac{3x^2 + 4}{x - y} + \frac{5x - 11}{y - x} = \frac{3x^2 + 4}{x - y} + \frac{-1}{y - x} \times \frac{5x^2 - 11}{x - y}
\]
\[
= \frac{3x^2 + 4}{x - y} + \frac{-1(5x - 11)}{x - y} + \frac{3x^2 + 4}{x - y} + \frac{11 - 5x^2}{x - y}
\]
\[
= \frac{-2x + 15}{x - y}
\]

85
مثال 10 :
جمع نمایید :
\[
\frac{1}{2x} + \frac{5x}{x - 1} + \frac{3}{x + 1}
\]
نخست مخرج مشترک را پیدا می‌کنیم.

\[2x \cdot (x + 1)(x - 1)\]
تبتت مخرج ها عبارت آز:
\[2x \cdot (x + 1)(x + 1)(x - 1)\]
خورده ترین مخرج مشترک عبارت است از:
\[2x \cdot (x + 1)(x - 1)\] (LCD)

\[
\begin{align*}
\frac{1}{x} \cdot \frac{(x + 1)(x - 1)}{2x} & + \frac{5x}{(x + 1)(x - 1)} \cdot \frac{2x}{2x} \\
\frac{3}{x + 1} \cdot \frac{2x(x - 1)}{2x(x - 1)} &= \frac{(x + 1)(x - 1) + 10x^2 + 6x(x - 1)}{2x(x + 1)(x - 1)} \\
&= \frac{17x^2 - 6x - 1}{2x(x + 1)(x - 1)}
\end{align*}
\]

تمرين: جمع كنيد:

10. \[
\frac{2x^2 + 5x - 9}{x - 5} + \frac{2x - x + 11}{x - 5}
\]

11. \[
\frac{3x + 4}{x - 5} + \frac{2}{5 - x}
\]
12. \[\frac{\frac{2}{x} - 4xy + 4y^2}{2x - 3xy + \frac{2}{y}} + \frac{x + 4y}{2x - 2y} \]

مثال 11:

في صورة امكان، ساده سايد.

تهيئ كنيد:

\[\frac{x}{x^2 + 5x + 6} - \frac{2}{x^2 + 3x + 2} \]

\[\frac{x}{x^2 + 5x + 6} - \frac{2}{x^2 + 3x + 2} = \frac{x}{(x + 2)(x + 3)} - \frac{2}{(x + 1)(x + 2)} \]

نحور ترين مخرج مشترد \(LCM \) \(\rightarrow (x + 1)(x + 2)(x + 3) \)

\[\frac{x}{(x + 2)(x + 3)} \cdot \frac{x + 1}{x + 1} - \frac{2}{(x + 1)(x + 2)} \cdot \frac{x + 3}{x + 3} \]

\[= \frac{x(x + 1) - [2(x + 3)]}{(x + 1)(x + 2)(x + 3)} \]

\[= \frac{x}{x + 2} + x - 2x - 6 \]

\[\frac{2}{x + 2} - x - 6 \]

\[= \frac{(x - 3)(x + 2)}{(x + 1)(x + 2)(x + 3)} \]

\[= \frac{2}{(x + 1)(x + 3)} \]
تمرین: تفکیک نامید:

\[
\frac{x}{x^2 + 11x + 30} - \frac{5}{x^2 + 9x + 20}
\]

اقداها حاکی کسر مختلط (کسرالکسر) :

در اقداها های مختلط، نخست تمام حد های صورت کسر عمده را جمع و یا تفیق کرده، بعداً صورت را بالای مخرج تقسیم مینماییم. یا به عبارت دیگر، نخست عملیه‌های جمع و تفیق صورت و مخرج کسر را تشکیل نموده، سپس عملیه‌های تقسیم را اجراء می‌داریم.

مثال ۱۲:

ساده نامید:

\[
\frac{x + 1/5}{x - 1/3} = \frac{x \times (5/5) + 1/5}{x \times (3/3) - 1/3}
\]

\[
= \frac{(5x + 1)/5}{(3x - 1)/3}
\]

\[
= \frac{5x + 1}{3} \times \frac{3}{5x - 1}
\]

\[
= \frac{15x + 3}{15x - 5}
\]
\[
\frac{-a^2 - b^2}{a^2 + b^2} = \frac{1/a^2 - 1/b^2}{1/a + 1/b}
\]

\[
\frac{\left(\frac{b}{b}\right)X \frac{1}{a^2} - \left(\frac{a}{a}\right)X \frac{1}{b^2}}{\left(\frac{b}{b}\right)X \left(\frac{1}{a} + \frac{a}{a}\right)X \frac{1}{b}} = \frac{1/a - 1/b}{a^2 + b^2}
\]

\[
\frac{\left(\frac{b}{b}\right)X \frac{1}{a^2} - \left(\frac{a}{a}\right)X \frac{1}{b^2}}{\left(\frac{b}{b}\right)X \left(\frac{1}{a} + \frac{a}{a}\right)X \frac{1}{b}} = \frac{1/a - 1/b}{a^2 + b^2}
\]

\[
\frac{1 + x/a}{a - x^2/a} = \frac{1/a + 1/b}{1/a - 1/b}
\]
الف) در تمرین های ۱ الی ۳ تمام قیمت های مجزا x را در یافته نمائید.

1. \[
\frac{3x - 2}{x (x - 1)}
\]

2. \[
\frac{(\frac{2}{x} - 4)(x + 1)}{(x + 2)(\frac{2}{x} - 1)}
\]

3. \[
\frac{7y^2 - 2y + 4}{x (\frac{2}{x} - x - 6)}
\]

ب) تمرین ۴ الی ۶ را ساده سازید، بعداً جانشین های مجزا آنرا در افاده های ساده شده دریافت کنید:

4. \[
\frac{25x^2 y^2}{10xy^2}
\]

5. \[
\frac{\frac{2}{x} - 4}{\frac{2}{x} + 5x + 6}
\]

6. \[
\frac{\frac{2}{x} - 3x + 2}{\frac{2}{x} + x - 2}
\]
7. \[
\frac {\frac{2}{x-y}}{(x-y)^2} \cdot \frac{1}{x+y}
\]
8. \[
\frac {r-s}{r+s} \cdot \frac{\frac{2}{r-s}}{(r-s)^2}
\]
9. \[
\frac {\frac{3}{x} - 2x - 35}{\frac{2}{x} - \frac{3}{x} - 2x - 35} \cdot \frac{4x - 9x}{7x - 49}
\]
10. \[
\frac {\frac{3}{x} - 2x}{7x + 9} \cdot \frac{\frac{2}{x} - \frac{3}{x} - 2x - 35}{\frac{2}{x} - \frac{3}{x} - 2x - 35}
\]
11. \[
\frac {\frac{2}{a-a-6}}{\frac{2}{a} - 7a + 12} \cdot \frac{\frac{2}{a-2a-8}}{\frac{2}{a} - 3a - 10}
\]
12. \[
\frac {\frac{2}{a} - a - 12}{\frac{2}{a} - 6a + 8} \cdot \frac{\frac{2}{a+a-6}}{\frac{2}{a} - 2a - 24}
\]
13. \[
\frac {\frac{2}{m-n}}{\frac{m-n}{r+s}} \cdot \frac{\frac{2}{r+s}}{r+s}
\]
14. \[
\frac {\frac{2}{a-b}}{\frac{a+b}{x-y}} \cdot \frac{\frac{2}{a+b}}{x-y}
\]
15. \[
\frac{3x + 12}{2x - 8} - \frac{(x + 4)^2}{(x - 4)^2} \]
\[
\frac{\frac{a}{2} - a - 2}{a - a - 6} - \frac{\frac{a}{2} - a}{2a + a} \]
\[
\frac{\frac{x}{2} - \frac{y}{2}}{\frac{x - y}{3}} \times \frac{\frac{x}{2} + xy + \frac{y}{2}}{\frac{x}{2} + 2xy + \frac{y}{2}} \]
\[
\frac{\frac{c}{3} + 8}{c^2 - 4} \div \frac{\frac{c}{3} - 2c + 4}{c - 4c + 4} \]
19. \[
\frac{(x - y)^2 - z}{(x + y)^2 - z} \div \frac{x - y + z}{x + y - z} \]
20. \[
\frac{(a + b)^2 - 9}{(a - b)^2 - 9} \times \frac{a - b - 3}{a + b + 3} \]
21. \[
\frac{3}{2a + 3} + \frac{2a}{2a + 3} \]
22. \[
\frac{a - 3b}{a + b} + \frac{a + 5b}{a + b} \]
23. \[
\frac{y}{y - 1} + \frac{1 - y}{1 - y} \]
24. \[
\frac{a}{a - b} + \frac{b}{b - a} \]
25. \[\frac{x}{2x - 3y} \] \[\frac{y}{3y - 2x} \]

26. \[\frac{3a}{3a - 2b} \] \[\frac{2a}{2b - 3a} \]

27. \[\frac{y}{x + 2} + \frac{2}{x^2 - 4} \]

28. \[\frac{5}{a - 3} \] \[\frac{2}{a^2 - 9} \]

29. \[\frac{y}{\frac{z}{y} - 20} \] \[\frac{2}{y + 4} \]

30. \[\frac{6}{y + 6y + 9} \] \[\frac{5}{y + 3} \]

31. \[\frac{3}{x + y} \] \[\frac{x - 5y}{x^2 - y^2} \]

32. \[\frac{\frac{2}{a + 1}}{a^2 - 1} \] \[\frac{a - 1}{a + 1} \]

33. \[\frac{9x + 2}{3x^2 - 2x - 8} \] \[\frac{7}{3x^2 + x - 4} \]

34. \[\frac{3y}{y^2 - 7y + 10} \] \[\frac{2y}{y - 8y + 15} \]
35. \[
\frac{5a}{a-b} + \frac{ab}{a-b^2} + \frac{4b}{a+b}
\]

36. \[
\frac{6a}{a-b} - \frac{3b}{b-a} + \frac{5}{a-b^2}
\]

37. \[
\frac{7}{x+2} - \frac{x+8}{4-x^2} + \frac{3x-2}{4-4x+x^2}
\]

38. \[
\frac{6}{x+3} - \frac{x+4}{9-x^2} + \frac{2x-3}{9-6x+x^2}
\]

39. \[
\frac{1}{x+1} - \frac{x}{x-2} + \frac{2}{x+x+2}
\]

40. \[
\frac{x-1}{x-2} - \frac{x+1}{x+2} + \frac{x-6}{x^2-4}
\]

\[\text{ساده سازيد:}\]

41. \[
\frac{(x^2 - y^2)}{xy}
\]

42. \[
\frac{(a-b)}{b}
\]

43. \[
\frac{a-b^{-1}}{a+a^{-1}}
\]

44. \[
\frac{a-(a/b)}{b-(b/a)}
\]

45. \[
\frac{c+(8/c)}{1+(2/c)}
\]

46. \[
\frac{x^{-3}y^{-3}}{x^3+y^3}
\]

47. \(\frac{2}{x + xy + y} \)
48. \(\frac{2}{(a/b) - (b/a)} \)
49. \(\frac{(x/y) - (y/x)}{(1/y) + (1/x)} \)
50. \(\frac{(a/b) - (b/a)}{(1/a) - (1/b)} \)
51. \(\frac{\frac{2}{x^2 - y^2}}{\frac{x}{x^2 - y^2}} \)
52. \(\frac{\frac{a}{b} - \frac{b}{a}}{ab - ba} \)
53. \(\frac{a/(1-a) + (1+a)/a}{(1-a)/a + a/(1+a)} \)
54. \(\frac{(1-x)/(x+x/(1+x))}{(1-x)/(x+x/(1-x))} \)
55. \(\frac{1/a^2 + 2/ab + 1/b^2}{1/a^2 - 1/b^2} \)
56. \(\frac{1/x^2 - 1/y^2}{1/x^2 - 2/xy + 1/y^2} \)
57. \(\frac{(x+h)^2 - x}{h} \)
58. \(\frac{1/(x+h) - (1/x)}{h} \)
59. \(\frac{(x+h)^3 - x^3}{h} \)
60. \(\frac{1/(x+h)^2 - 1/x^2}{h} \)

\[
\left(\frac{x+1}{x} + \frac{1}{x+1}\right) = \frac{1}{x+1} + \frac{1}{x+1} \quad (1)
\]
\[a \frac{3b + 4a}{b} = \frac{a(3b + 4a)}{ab} \]
\[4a + 3b = \frac{b}{ab} \]
1-8 کاذب و ایفایه‌های جذر دار:

اهداف: با تکمیل کردن این بخش شما قادر خواهید شدکه:
- ایفایه‌های جذر دار را ساده سازید.
- پردازش مانند که شما جذر باشد، نایید.
- کسر را با استفاده از مزدوج به کسور ناطق، تبدیل کرده بتوانی.
- معلوم کنید: آیا اعداد داده شده جایین مجاز اند؟

عدد جذر مربع عدد c میباشد، در صورتی که (c - 3) عدد جذر مربع عدد 9 میشود. با عبارت دیگر، 9 = (3 - 3) = همه (3) عدد جذر مربع 9 نیز میشود، زیرا: 9 = 3 است.

عدد جذر اگر (nth) عدد c است، اگر n جذر مربع عدد c باشد. بطور مثال: عدد 5 جذر مکعب عدد 125 میباشد، زیرا 125 = 5 میشود. هر عدد حقیقی یک جذر مربع حقیقی دارد.

سیمبول √a جذر مربع عدد a را نشان می‌دهد. و √a جذر چارم غیر منفی را نشان می‌دهد. بطور خلاصه سیمبول √a جذر ام n را ناپایه که میکند. سیمبول √a را بنام جذر (Radical) می‌نامند، و مقدار √a را مقدار جاذر (Radicand) می‌نامند.

را که زیر علامه جذر نوشته میشود، بنام ریشه کنن n می‌نامند. a مقدار است.

جذر حاصل می‌باشد.

هر عدد حقیقی مثبت در جذر مربع دارد که بکی آن منفی و دیگری منفی میشود.

میباشد.
به همین ترتیب جذر چهارم مردد، عدد منفی و مثبت میشود. به عباره دیگر جذر
آن عدد که انداکس آن جفت میباشد، جذرهای آن نیز مثبت و منفی میباشد.
جذر مثبت یک عدد، بنام جذر عمده یاد می‌شود. اگر جذر مانند: \(\sqrt[4]{18} \) بکار برده شوند، در آنصورت، مردام جذر عمده است. و بر عکس اگر هدف جذر
مثبت باشد، در آنصورت علامه های \(2 \sqrt{18} \) و \(18 - \sqrt{18} \) بکار برده می‌شود.

تعریف:
در افاده، \(n \sqrt[a]{a} \) اگر \(n \) جفت باشد، مردام از جذر عمده \(a \) است و جذر غیر مثبت
با سیمبول \(\sqrt[n]{a} \) نشان داده می‌شود.

جانشین‌با مفهوم یا تعویض مجاز:
در سیستم اعداد حقیقی، عدد منفی جذر ندارد. هر جانشین برای حرف تحت
علامه جذر (\(\sqrt{x} \)) که انداکس آن جفت بوده و ریکیند (Radicand) را منفی بسازد بنام جانشین (ب) مفهوم یاد می‌شود. جانشین مجاز آن است که حرف تحت جذر در اثر تعویض
علامه منفی بیدا نکند.

هر عدد حقیقی، مثبت، منفی و یا صفر، تناهی ک جذر مکب دارد، و همین
تعریف برای جذر طاق هر عدد نیز صدق می‌کند. چنانچه در \(\sqrt[a]{a} \) اکر \(n \) طاق باشد، عدد
ا فقط یک جذر \(n \) ام دارد.

مثال (1): معلوم کنید که 0 و 3 در افاده ذیل جانشین های با مفهوم
آندازه‌سازی اقلیدیت‌های جغرافیا:
اگر به دلیل را تحت غرب پیگیری بکنید: \(\sqrt{3} \) این اقلیده معادل است به صورت \(\sqrt{9} \) که بعد از ساده‌سازی می‌شود به عدد \(3 \). و همچنین \(3 = \sqrt{3} \) است. از مثال‌های فوق می‌توان اصلی اقلیده ساده‌سازی جذر ها را که قبیل اندهکس \(n \) آن عدد جفت باشد.

چنین خلاصه‌نامه نیست:
الف:
برای عدد R, به‌طور کلی، $\sqrt[11]{R^2} = |R|$. در صورتی که اندازه R جذر عدد جفت باشد، به عبارت دیگر $|R| = R$، اگر n عدد جفت باشد.

مثال:

ساده‌سازی:

1. $\sqrt{x} = |x|$
2. $\sqrt{\frac{x}{z}} = \sqrt{x - z}$
3. $\sqrt{\frac{x}{y}} = \sqrt{x} \div \sqrt{y}$

ب:
برای عدد R, به‌طور کلی، $\sqrt[n]{R}$ می‌تواند به عنوان R یا $-R$ نشان‌دهد.

مثال:

د:
اگر عدد n طاق باشد رابطه $\sqrt[n]{R} = R$ صحیح است.

مثال:

ساده‌سازی:

5. $\sqrt[3]{(15ab)^3} = 15ab$

ب:
مقايسه نمایید:

6. $\sqrt[4]{4 \times \sqrt{9}}$ و $\sqrt[4]{4 \times 9}$

$\sqrt[4]{4 \times \sqrt{9}} = 2 \times 3 = 6$ و $\sqrt[4]{4 \times 9} = \sqrt[4]{36} = 6$

لهذا $\sqrt[4]{4 \times \sqrt{9}} = \sqrt[4]{4 \times 9}$
کلیه 13:
برای هر عدد حقیقی a و b در صورتیکه اندکس آن عدد n باشد، رابطه ذیل صدق می‌کند:

$$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$$

تمرین:

5. $\sqrt{(x+2)^3}$
6. $\sqrt[4]{x(y-2)^4}$
7. $\sqrt[4]{(x+2)^4}$
8. $\sqrt{x^2+8x+16}$
9. $\sqrt[3]{(-4xy)^3}$

مثال ها:

7. $\sqrt{3} \times \sqrt{5} = \sqrt{3 \times 5} = \sqrt{15}$
8. $\sqrt{x+2} \times \sqrt{x-2} = \sqrt{(x+2)(x-2)} = \sqrt{x^2-4}$
9. $\sqrt{4} \times \sqrt{5} = \sqrt{4 \times 5} = \sqrt{20}$

10. $\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$
11. $\sqrt[3]{5^2} = \sqrt[3]{x \times 5} = \sqrt[3]{x^2} \times \sqrt[3]{5} = \sqrt[3]{x^2 / 5}$
12. $\sqrt[3]{32} = \sqrt[3]{8 \times 4} = \sqrt[3]{8^2 \times 4} = 2\sqrt[3]{4}$
13. $\sqrt[3]{216} \times \sqrt[3]{y} = \sqrt[3]{36 \times 6 \times y^2 \times x \times \sqrt[3]{x} \times \sqrt[3]{y} \times \sqrt[3]{y}}$
 $= \sqrt[3]{6x^2 \ y \ / \sqrt[3]{6xy} = 6\sqrt[3]{x} / y \ / \sqrt[3]{6xy}$
14. $\sqrt[3]{2x^2 - 4x + 2} = \sqrt[3]{2 (x-1)^2}$
 $= \sqrt[3]{x-1 \ / \sqrt[3]{2}$
تمرین:
ساده کنید:

10. \(\sqrt{19} \times \sqrt{7} \)
11. \(\sqrt{X+2y} \times \sqrt{x-2y} \)
12. \(\sqrt[4]{27} \times \sqrt[4]{3} \)
13. \(\sqrt{300} \)
14. \(\sqrt[3]{36y} \)
15. \(\sqrt{2x^2 + 4x + 2} \)
16. \(\sqrt[3]{16} \)
17. \(\sqrt[3]{(a+b)^2} \)

مشخصات اضافه‌های عددی در این حضور دارای حاشیه‌های می‌باشند.

تکمیلی 14:
برای هر عدد غیر منفی نیز، و هر عدد مثبت اندکس، دارای اندازه دلیل صدق می‌کند:

\[
\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\]

مثال:
ساده‌سازی:

15. \(\sqrt[3]{16} \times \sqrt[3]{y} = \sqrt[3]{\frac{16x}{y}} = \frac{\sqrt[3]{16x}}{\sqrt[3]{y}} = \frac{\sqrt[3]{16x} \times x}{\sqrt[3]{y}^{\frac{2}{x}}} = \frac{4}{x \sqrt[3]{x}} \)

16. \(\sqrt[3]{27y^5} = \sqrt[3]{\frac{27y^5}{x^3}} = \frac{\sqrt[3]{27y^5}}{\sqrt[3]{x^3}} = \frac{3y^\frac{2}{3}}{\sqrt[3]{7x}} \)

مثال:
ساده‌سازی:

17. \(\sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2} \times \frac{2}{4}} = \sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{2} \)
18. \(\frac{7}{9} = \frac{7}{9} \times \frac{3}{3} = \frac{21}{27} = \frac{3}{9} = \frac{3}{3} = \frac{21}{3} \)

تقسيم نموذج ساده سايد:

19. \(\frac{18\sqrt{72}}{6\sqrt{6}} = 3 \cdot \frac{72}{6} = 3 \cdot 12 = 3 \cdot 4 \times 3 = 3 \times 2 \sqrt{3} = 6 \sqrt{3} \)

20. \(\frac{\sqrt{32}}{\sqrt{2}} = \frac{\sqrt{16} \cdot 2}{\sqrt{2}} = 4 \cdot 2 \sqrt{2} = 2 \sqrt{2} \)

تمرين:

ساده كنيد:

18. \(\sqrt{\frac{49}{64}} \)

19. \(\sqrt{\frac{25}{y^2}} \)

20. \(\sqrt{\frac{7}{5}} \)

21. \(3 \sqrt{\frac{7}{125}} \)

22. \(\sqrt{\frac{75}{3}} \)

23. \(\sqrt{\frac{2x^3}{50x}} \)

24. \(\sqrt[3]{\frac{24x^3}{3y^4}} \)

\(\sqrt[4]{3} \text{ و } \sqrt[4]{3^4} \)

\(\sqrt[4]{3} = 3 = 9 \)

(\(\sqrt[4]{3} \)) = \sqrt[4]{3} \times \sqrt[4]{3} \times \sqrt[4]{3} \times \sqrt[4]{3} = 9

لذا:

\(\sqrt[4]{3} = (\sqrt[4]{3})^4 \)

102
قانون ۱۵:
برای هر عدد غیر منفی a، هر عدد طبیعي (m) و هر عدد طبیعي (n)، رابطه
\[\sqrt[n]{a^m} = (\sqrt[n]{a})^m \]

مثالها:
ساده سازيد:

22. \[\frac{3}{\sqrt[3]{8}} + \left(\frac{3}{\sqrt[5]{8}}\right) = 2 = 32 \]

23. \[(\sqrt[3]{2})^6 = \sqrt[6]{2} = 2 = 8 \]

24. \[3\sqrt{8} - 5\sqrt{2} = 3\sqrt{4\times2} - 5\sqrt{2} = 3 \times 2\sqrt{2} - 5\sqrt{2} \]
\[= (6 - 5)\sqrt{2} \]
\[= \sqrt{2} \]

25. \[(4\sqrt[3]{3} + \sqrt{2})(\sqrt[3]{3} - 5\sqrt{2}) = 4\left(\sqrt[3]{3}\right)^2 - 20\sqrt[3]{3}\sqrt{2} + \sqrt{2}\sqrt[3]{3} \]
\[- 5\left(\sqrt[3]{2}\right)^2 = 4 \times 3 - 20\sqrt{6} + \sqrt{6} - 5 \times 2 \]
\[= 12 - 19\sqrt{6} - 10 \]
\[= 2 - 19\sqrt{6} \]

تمرين:

ساده نامتيد:

25. \[\sqrt[3]{27^6} \]
26. \[(\sqrt[3]{2})^8 \]
27. \[7\sqrt[5]{5} + 3\sqrt[5]{5} - 8\sqrt{20} \]
28. \[5\sqrt[4]{16y} + 7\sqrt[2]{2y} \]
29. \[(\sqrt[3]{3} - 5\sqrt{2})(2\sqrt[3]{3} + \sqrt{2}) \]
مثال 26: سرعت یک موتور در حالت (لختیدن) وقتیکه یک موتور ران در حال رفتار، دفعات برک می‌گیرد. در آن‌صورت موتور به یک مسافت معین بالای سرک می‌لختد. و از آن خطر های سیاه بالای سرک باقی می‌ماند. چه دریافت سرعت موتور رابطه ذیل بکار می‌برد:

\[r = 2\sqrt{5L} \]

سرعت تقریبی موتور به واحد میل فی ساعت - (mph) (آست که به فاصله L به واحد فت.) خط سیاه را بالای سرک نشانی که اوست. مثال: اگر طول خط سیاه (مسافت لغزنگ) 306 فت باشد، سرعت تقریبی موتور را معلوم کنید؟

\[r = 2\sqrt{5L} = 2\sqrt{\frac{306}{5}} = 2\times\sqrt{61.2} = 2\times24.7 = 49.4
\]

(سرعت موتور به میل فی ساعت) = 49.4

 coment:

30. اگر یک موتور هنگام برک کردن به فاصله 70ft خط سیاه را بالای سرک کشیده باشد، دریافت کنید که سرعت رفتار موتور قبل از برک کردن چند میل فی ساعت بود؟
از بین بروید. جذر از صورت یا مخرج کسر:

هنگامیکه مخرج یک کسر، یک حد زیر جذر داشته باشد، معولًا مخرج را به ترتیبی از جذر خارج میکنیم، که صورت و مخرج کسر را به مخرج کسر ضرب نشانیم.

مثال:

27. \(\frac{\sqrt{7}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{35}}{\sqrt{25}} = \frac{\sqrt{35}}{5} \)

28. \(\frac{\sqrt{2a}}{\sqrt{5b}} \times \frac{\sqrt{5b}}{\sqrt{5b}} = \frac{\sqrt{10ab}}{5b} \)

29. \(\frac{\sqrt[3]{54x^3}}{\sqrt[3]{4y^5}} \times \frac{2y}{2y} = \frac{\sqrt[3]{27^3 x^4y}}{2^2} \)

هر کاه مخرج کسر دو حد داشته باشد، صورت و مخرج کسر را به مزدوج مخرج ضرب مینماییم که با این عمل مخرج کسر به شکل (ناطق - قابل فهم) تبدیل می‌شود.

مثال:

30. \(\frac{1}{\sqrt{2} + \sqrt{3}} \times \frac{1}{\sqrt{2} - \sqrt{3}} = \frac{\sqrt{2} - \sqrt{3}}{(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})} = \frac{\sqrt{2} - \sqrt{3}}{2 - 3} = \frac{\sqrt{2} - \sqrt{3}}{2 - 3} \)

\(= \frac{\sqrt{2} - \sqrt{3}}{2 - 3} \)
در اینجا مخرج ها را ناظق بسازید. فرض کنید که حروف اعداد تام، و مثبت را نشان می‌دهد.

31. \[
\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}} \times \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} = \frac{(\sqrt{x} + \sqrt{y})^2}{(\sqrt{x})^2 - (\sqrt{y})^2}
\]

\[
= \frac{x + 2\sqrt{xy} + y}{x - y}
\]

در اینجا صورت کسر ها را ناظق سازید. فرض کنید که تمام حروف، اعداد تام و مثبت باشند.

32. \[
\frac{1 - \sqrt{2}}{5} = \frac{1 - \sqrt{2}}{5} \times \frac{1 + \sqrt{2}}{1 + \sqrt{2}} = \frac{(1 - \sqrt{2})(1 + \sqrt{2})}{5(1 + \sqrt{2})}
\]

\[
= \frac{1 - 2}{5 + 5\sqrt{2}} = \frac{-1}{5 + 5\sqrt{2}}
\]

33. \[
\frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} = \frac{(x + h) - x}{h(\sqrt{x + h} + \sqrt{x})}
\]

\[
= \frac{h}{h(\sqrt{x + h} + \sqrt{x})} = \frac{1}{\sqrt{x + h} + \sqrt{x}}
\]

مخرج کسر را ناظق سازید:

31. \[
\frac{1}{\sqrt{3} - \sqrt{5}}
\]

32. \[
\frac{\sqrt{x - 5}}{\sqrt{x} + 2}
\]

تمرین:

107
صبرت کسر را نطق سازید:

33. \(\frac{\sqrt{a+2} - \sqrt{a}}{2} \)

34. \(\frac{\sqrt{x} - \sqrt{5}}{\sqrt{x} + \sqrt{5}} \)

تمرین 8-1 :

معلوم کنید، که اعداد ارائه شده در افادات های ذیل جانشین جای اند یا خیر؟

i

1. \(\sqrt{x-3} : \text{-}2 , 5 \)
2. \(\sqrt{2x-5} : 3 , 2 \)
3. \(\sqrt{3-4x} : \text{-}1 , 1 \)
4. \(\sqrt{x+3} : 0 , 4.3 \)
5. \(\sqrt{1-\frac{2}{x}} : 1 , 3 \)
6. \(\sqrt{x^2+2x+1} : \text{-}3 , 4 \)
7. \(\sqrt{2x+7} : \text{-}4, 5 \)
8. \(\sqrt{3-5x} : 1 , 2 \)

ii

9. \(\sqrt{(-11)^2} \)
10. \(\sqrt{(-1)^2} \)
11. \(\sqrt{16x^2} \)
12. \(\sqrt{36x^2} \)
13. \(\sqrt{(b+1)^2} \)
14. \(\sqrt{(2c-3)^2} \)
15. \(\sqrt[3]{-27x^3} \)
16. \(\sqrt[3]{-8y^3} \)
17. \(\sqrt{x^2-4x+4} \)
18. \(\sqrt{y^2+16y+64} \)
19. \(\sqrt[5]{32} \)
20. \(\sqrt{5-32} \)
21. \(\sqrt{180} \)
22. \(\sqrt{48} \)
افاده های ذیل را ساده سازید، فرض کنید تمام حروف اعداد تام و مثبت باشند.
و همچنان تمام جذر نیز مثبت باشند.

23. \(\sqrt[3]{54} \)
24. \(\sqrt[3]{135} \)
25. \(\sqrt[3]{128 \cdot c \cdot d^4} \)
26. \(\sqrt[4]{162c \cdot d^6} \)
27. \(\sqrt{3 \times \sqrt{5}} \)
28. \(\sqrt{6 \times \sqrt{8}} \)

29. \(\sqrt[3]{2x \cdot y} \sqrt[3]{12xy} \)
30. \(\sqrt[4]{3y \cdot z} \sqrt[5]{20z} \)
31. \(\sqrt[3]{3x^2 \cdot y} \sqrt[3]{36x} \)
32. \(\sqrt[4]{8x^2 \cdot y} \sqrt[5]{4x \cdot y} \)
33. \(\sqrt[3]{2(x + 4)} \sqrt[4]{4(x + 4)^4} \)
34. \(\sqrt[3]{4(x + 1)^3} \frac{18}{(x + 1)^2} \)

35. \(\sqrt[3]{21ab^2} \)
36. \(\sqrt[3]{128ab^2} \)
37. \(\sqrt[3]{3ab} \)
38. \(\sqrt[3]{16a^2 \cdot b} \)
39. \(\sqrt[3]{40m} \)
39. \(\sqrt[3]{3m} \)
40. \(\sqrt[3]{3 \cdot 40xy} \)
41. \(\sqrt[3]{3 \cdot 24x^2} \)
42. \(\sqrt[3]{8x} \)
43. \(\sqrt[3]{a^2 - b^2} \)
44. \(\sqrt[3]{\frac{9a^2}{8b}} \)
44. \(\sqrt[3]{\frac{5b^2}{12a}} \)
45. \(\frac{3}{25} \sqrt[3]{\frac{2x^2y^3}{2}} \)

47. \(\frac{3^{\frac{4}{2}}}{(\sqrt{xy})^2} \)

49. \(\frac{3^{\frac{2}{b^2}} \sqrt{4xy}}{2^{\frac{1}{a^2}} b^2 \sqrt{9x^3 y^4}} \)

51. \(8x \sqrt{2} - 6 \sqrt{20} - 5 \sqrt{8} \)

53. \(2^{\frac{3}{8}} \sqrt{x} + 5^{\frac{3}{27}} \sqrt{x} - 3^{\frac{3}{8}} \sqrt{x} \)

55. \(3^{\sqrt{3}} \sqrt{y} - \frac{y^{48}}{\sqrt{2}} + \sqrt{12} \sqrt{4y^2} \)

57. \((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) \)

59. \((\sqrt{x} - x)^2 \)

61. \(5\sqrt{x} + \frac{35}{\sqrt{x}} \)

63. \((\sqrt{x + 3} - \sqrt{3})(\sqrt{x + 3} + \sqrt{3}) \)

65. \(T = 2\pi \sqrt{\frac{L}{32}} \)

--- رقاصه (Formula) ---

(1 - m) فرمول (Formula)

--- (Formula) ---

طول تار رقاصه به فت (L)

مثال: پیرود رقاصه را در صورتی در یافته کنید که طول L = 2 فت، 64 فت، T = 2π \(\sqrt{\frac{L}{32}} \).
66. \[C = \sqrt{a^2 + b^2} \quad A \mathbf{c} = ? \]

در اینجا مخرج‌ها را ناقل می‌سازید. فرض کنید که حروف، اعداد مثبت‌را نشاندگی می‌کنند. و همچنین اعداد زیر جذر نیز مثبت می‌باشند.

67. \[\frac{6}{3 + \sqrt{5}} \]

68. \[\frac{2}{\sqrt{3} - 1} \]

69. \[\sqrt[3]{\frac{16}{9}} \]

70. \[\frac{3\sqrt{3}}{3\sqrt{6}} \]
71. \(\frac{4\sqrt{x} - 3\sqrt{xy}}{2\sqrt{x} + 5\sqrt{y}} \)

72. \(\frac{5\sqrt{x} + 2\sqrt{xy}}{3\sqrt{x} - 2\sqrt{y}} \)

صبرت های کسور را ناطق باشید:

73. \(\frac{\sqrt{2} + \sqrt{5a}}{6} \)

74. \(\frac{\sqrt{3} + \sqrt{5y}}{4} \)

75. \(\frac{\sqrt{x + 1} + 1}{\sqrt{x + 1} - 1} \)

76. \(\frac{\sqrt{x + 4} - 2}{\sqrt{a + h} - \sqrt{a}} \)

77. \(\frac{\sqrt{x + 1} + 1}{\sqrt{a + 3} - \sqrt{3}} \)

78. \(\frac{\sqrt{x + 4} - 2}{\sqrt{a + h} - \sqrt{a}} \)

فرض کنید تمام حروف اعداد مثبت باشند:

79. \(\sqrt{8.2x^3} y \sqrt{12.5xy} \)

80. \(\sqrt{0.012y^4 z \sqrt{1.305z}} \)

81. \(\sqrt{6.03a^2} \)

82. \(\sqrt{\frac{3.2b^3}{82.1a}} \)

83. یک مثلث متقارنی الاضلاع در دیل نشان داده شده. را از جنس a در پایت کنید.

84. در شکل ذیل، فرمول مساحت مثلث را از جنس a در پایت کنید.
شکل ABCD را معلوم کنید.

85.

در یک مثلث متساوی الاضافات قائم الزاویه، اضلاع متساوی آن s میباشند.

86. فرمول را پیدا کنید که از آن ضلع سوم را معلوم کرده بتوانیم.

87. قطر یک مربع، $2\sqrt{8}$ است. ضلع آن را معلوم کنید؟

88. مساحت شکل مربع، 100 نقطه مربع است، نقاط D, C, B, A نقاط $PQRS$.

وسط اضلاع میباشند. مساحت شکل مربع $ABCD$ را معلوم کنید؟

89. $\sqrt{1 + \frac{x^2}{2}} + \frac{1}{\sqrt{1 + \frac{x^2}{2}}}$

90. $\sqrt{1 - \frac{x^2}{2}} - \frac{1}{2\sqrt{1 - \frac{x^2}{2}}}$

ساده سازید:
91. \(\sqrt{a+b} \neq \sqrt{a}+\sqrt{b} \)

92. \(\sqrt{5+\sqrt{24}} = \sqrt{2+\sqrt{3}} \)

93. \(/a^N/=|a|^N \)

برای کدام رقم n رابطه صحیح است.

94. \(/x+y/=/x/+|y| \)

برای کدام قیمت‌های x و y رابطه صحیح است.

95. \(w = d \sqrt{\frac{V_o}{\sqrt{V_o^2+19.6h}}} \)

قطر شیر دهن \(\leq d \)

سرعت آب \(\leq v_o \)

عرض ستورن آب \(\leq w \)

ارتفاع آب از شیر دهن تا زمین \(\leq h \)

ثبوت کنید:

برای هر عدد حقيقی مثبت a و b و c و d موجود اند که رابطه ذیل را نوشته می‌توانیم:

\[\sqrt{a+b} = \sqrt{c}+\sqrt{d} \]

 تحت کدام شرایط \(b=d, a=c \) می‌شود.
9-1 توان های ناطق

اهداف:
- توان را به جذر تبدیل نمائید.
- جذر را به توان تبدیل کنید.
- افاده های جذر دار را ساده سازید.

حال ما در موفقی هستیم که توان های کسری را با استفاده از قوانین قبلی (توان های اعداد تام) ساده سازیم.

مثال:
\[
\frac{1}{\sqrt[2]{a}} \cdot \frac{1}{\sqrt[3]{a}} = \frac{1}{a} = a = a
\]

\[
\left(\frac{m}{n}\right)^n = \left(\frac{m}{n}\right) = a^{m/n}
\]

تعریف:
عدد a و m، n در صورتی که a مثبت باشد و عدد اعداد طبیعی باشد باین شکل:
\[
a = \left(\sqrt[n]{a}\right)^n = \sqrt[m]{a^m}
\]

و همچنان:

\[
a = \left(\frac{m}{n}\right)^{\frac{1}{m/n}}
\]

تحلیل کردن به حالت جذر:
به حالت جذر تبدیل نموده بعداً در صورت امکان ساده سازید:

مثالها:

1. \[
m = \sqrt[3]{m^2}
\]

2. \[
t = \frac{1}{t^{1/2}} = \frac{1}{\sqrt{t}}
\]
3. \(\sqrt[2]{2} = \sqrt[2]{5} = \frac{5}{\sqrt[2]{64}} = \frac{5}{8} = 32,678 \)

4. \(\frac{-3}{4} \quad \frac{1}{16} = \frac{1}{16^{\frac{3}{4}}} = \frac{1}{(16^{\frac{1}{4}})^3} = \frac{1}{(\sqrt[4]{16})^3} = \frac{1}{2^3} = \frac{1}{8} \)

تمرین:

به جذر تبدیل نمایید:

1. \(\sqrt[2]{n} \)
2. \(\sqrt[4]{y} \)
3. \(\sqrt[5]{32} \)
4. \(\sqrt[3]{64} \cdot \sqrt[3]{8} \)

مثال‌ها:

به حال توان دار تبدیل نمایید و ساده‌سازی کنید:

5. \(\sqrt[5]{7xy} \cdot \left(\sqrt[4]{7xy} \right)^{\frac{4}{5}} \)
6. \(\frac{3}{2} \sqrt[4]{8} = \frac{3}{2} \sqrt[4]{(8)^{\frac{4}{2}}} = 2 = 16 \)
7. \(\sqrt[3]{x} = \sqrt[3]{x} = \sqrt[3]{x} \quad (\sqrt[3]{x}) \)
8. \(\sqrt[4]{4} = \sqrt[4]{4} = \sqrt[4]{(4)^{\frac{4}{4}}} = 2 \left(\sqrt[4]{2} \right) \)
9. \(\sqrt[3]{7} = \sqrt[3]{7} = \frac{1}{3} \left(\sqrt[3]{7} \right) = 7 \left(\sqrt[3]{7} \right) \)
10. \(\sqrt[5]{6} \cdot \sqrt[6]{6} = \sqrt[5]{6} \cdot \sqrt[6]{6} = 6 \left(\sqrt[5]{6} \right) \)

تمرین‌ها:

به حال توان دار تبدیل کرده بعداً ساده‌سازی کنید:

5. \(\sqrt[4]{(5ab)^3} \)
6. \(\sqrt[4]{16^{\frac{3}{4}}} \)
7. \(\sqrt[4]{4a} \)
8. \(\sqrt[3]{4} \)
9. \(\sqrt[3]{5} \cdot \sqrt[3]{5} \)
مثال‌ها: حد هایی دارایی توان ناطق را ساده سازید.

11. \(\frac{5}{x} + \frac{2}{x} = \frac{9}{x} = \frac{3}{\sqrt{x}} = x \sqrt{x} \)

12. \(\frac{\sqrt[3]{a}}{a} = a = \frac{1}{a^{\frac{1}{3}}} = \frac{1}{3a^{\frac{2}{3}}} = \frac{1}{3a^{\frac{1}{3}}} \)

13. \((5 - 5^\frac{1}{3}) \times 5 = 5 \times 5 - 5 \times 5 = 5^\frac{2}{3} \times 5^\frac{1}{3} = 5 \)

ساده سازید و بعداً به حالت جذر بنویسید:

10. \(\frac{\frac{3}{4}}{a} \times \frac{1}{\sqrt{a}} \)

11. \(\left(\frac{3}{\sqrt[3]{a}} \right) \)

12. \((2 + 2^\frac{1}{2}) \times 2^\frac{1}{2} \)

نوشته‌ی جذور:

بعضی افاده‌ها که دارایی جذر بوده، یا توان کسری داشته باشند. این امکان موجود است که آن‌ها ساده سازید، تا یک جذر از آن بدست آید.

این افاده‌ها را طوری بنویسید که تحت یک جذر بیایند.

مثال‌ها:

14. \(a^\frac{1}{2} \times b^\frac{1}{2} \times a^\frac{1}{4} = (a^\frac{1}{2} b^\frac{1}{2} a^\frac{1}{4}) = \sqrt[3]{a b^\frac{1}{2}} \)

15. \(a^\frac{1}{2} b^\frac{1}{2} = (a b^\frac{1}{2}) = \sqrt{a b} \)

117
16. \(\sqrt[4]{7 \sqrt{3} \times 3} = 7 \times 3 = 7 \times 3 = (7 \times 3) = \sqrt[4]{63} \)

\[\frac{\sqrt[4]{(x + 2)^3 \sqrt{x + 2}}}{\sqrt{x + 2}} = \frac{\left(\frac{3}{5}
ight)^{\frac{3}{5} + \frac{1}{2} - \frac{1}{2}}}{(x + 2)^{\frac{1}{2}}} = (x + 2)^{\frac{9}{2} - 2} = (x + 2)^{\frac{9}{2} - 2} \]

افاده های ذیل را تحت پدید جذر \(\sqrt{\text{دراورد}} \) در آورید.

13. \(3 \sqrt{5 \times 2} \)

14. \(\frac{2 \sqrt{5}}{x \sqrt{y \sqrt{z}}} \)

15. \(\frac{\sqrt[4]{(x + y)^3}}{\sqrt{x + y}} \)

1. \(x^{\frac{3}{4}} \)

2. \(y^{\frac{3}{5}} \)

3. \(16^{\frac{3}{4}} \)

4. \(4^{\frac{3}{2}} \)

5. \(125^{-\frac{1}{3}} \)

6. \(32 \)

7. \(a^{\frac{5}{4}} - \frac{3}{4} \)

8. \(x^{\frac{3}{5}} - \frac{1}{5} \)

به حالات جذری تبدیل نموده و ساده نمائید.

9. \(\sqrt[3]{20^2} \)

10. \(\sqrt[3]{17} \)

11. \((\sqrt[5]{13})^5 \)

12. \((\sqrt[4]{12})^4 \)

تمرین 9-1:

به حالات توان دار تبدیل کرده و ساده نمائید.

118
ساده سازید و بعدا به حال جذری در آورید تا وقتیکه دیگر اکتشاف مناسب نباشد.

27. \((\frac{3}{2}a^{\frac{x}{2}})(4a^{\frac{1}{2}})\)

28. \((3a^{\frac{2x}{3}})(8a^{\frac{2}{3}})\)

29. \(\left(\frac{x^{\frac{6}{9}}}{9b^{\frac{9}{9}}}\right)^{-\frac{1}{2}}\)

30. \(\left(\frac{x^{\frac{2}{3}}}{4y^{\frac{2}{3}}}\right)^{-\frac{1}{2}}\)

31. \(\frac{\frac{2}{3}xy}{-\frac{1}{2}x^{\frac{1}{2}}y^{\frac{1}{2}}}\)

32. \(\frac{\frac{1}{2}x^{\frac{1}{2}}y^{\frac{1}{2}}}{a^{\frac{1}{2}}b^{\frac{3}{2}}}\)

این افاده‌ها را تحت یک جذر و آورید و بعدا ساده سازید.

33. \(\sqrt{6}\sqrt{2}\)

34. \(\sqrt{2}\sqrt{8}\)

35. \(\sqrt{xy}\sqrt{\frac{x}{y}}\)

36. \(\sqrt{ab}\sqrt{ab}\)

37. \(\sqrt[3]{\frac{4}{a}}\sqrt[3]{\frac{3}{a}}\)

38. \(\sqrt[3]{\frac{3}{a}}\sqrt[3]{\frac{2}{a}}\)
39. \[\frac{\sqrt[3]{a+x}}{\sqrt[3]{(a+x)^2}} \] 40. \[\frac{\sqrt[3]{(x+y)^2}}{\sqrt[3]{(x+y)^3}} \]

توسط کلکولیتر حل نماند.

41. \(\sqrt[3]{13} \) 5 42. \(\sqrt[3]{17} \) 5 2

43. 12.3 \(\frac{3}{2} \) 44. 1.345 \(\frac{5}{2} \)

45. 105.6 \(\frac{3}{4} \) 46. \(\text{کلکولیتر} \) 7.14

مطالعات روان شناسی نشان می‌دهد که، علاوه بر ریسه رو را وقتی یک دریور

خییرت خوانده می‌تواند که طول حروف آن با فارمول ذیل تمین شود.

\[L = \frac{0.000169d}{h} \]

تاماً واحد ها به فت می‌باشد.

فاصله از موتور تا به آنجا که حروف پیاده را درج شده، ارتقای چشم دریور از \(h \) سرک \(L \) را دریافت کنید و توجه کنید \(h \) داده شده باشد.

47. \(h = 4\text{ft}, d = 180\text{ft} \) 48. \(h = 4\text{ft}, d = 100\text{ft} \)

49. \(h = 4\text{ft}, d = 200\text{ft} \) 50. \(h = \text{ft}, d = 300\text{ft} \)
ساده‌ناتید:

51. \(\sqrt{a^2} \cdot \sqrt{a} = a\)

52. \(\frac{2a \cdot b \cdot c}{54a \cdot b \cdot c} = \frac{2}{54} = \frac{1}{27}\)

ضبط مطالب روان شناسی صنعتی، در اکثر حالات کارکردن هر قدر که یک کار

زیاد دخمه اجرا گردد، (تمرین شود)، بعداً تکمیل همان کار وقت کمتر را در بر

می‌گیرد. درمان مورد، رابطه ذیل بدست آمده است.

\[T = 34x - 0.4l \]

تعداد ساعات کار است که برای\(x\) واحد که تولید می‌گردد، ضرورت است.

\(T\) را در یافته کنید، اگر\(x\) مساوی با\(1, 6, 8, 10, 32, 64\) باشند. (دریسه کلکولیتر)
خلاصه و تکرار فصل اول

صفحات دیل، شامل مطالبی می‌باشند که شما بعد از ختم فصل اول به اجرا آن قادر می‌باشید.

تمرین‌های تکراری برای پرکتس‌ها است، جواب آنها در کتاب درج است. اگر کدام تمرین را غلط می‌کنید دوباره به موضوع رجعت نموده همان موضوع را دوباره مطالعه نمایید.

در ذیل اعداد نشان داده شده اند:

\[\frac{1}{5}, \sqrt{7}, \sqrt{10}, 1, \frac{2}{3}, 7, 19, 31, 0, 12, -3, 43.89 \]

1. کدام اعداد کام الاند؟
2. کدام اعداد طبیعی اند؟
3. کدام اعداد حقیقی اند؟
4. کدام اعداد ناطلق اند؟
5. کدام اعداد غیر ناطلق اند؟
6. کدام اعداد مکمل اند؟

محاسبه نمایید:

7. \[15 + (19) \]
8. \[-12 + \left(-4 \right) \] / \]
9. \[-2.5 + \left(-2.5 \right) \]
10. \[22 - \left(-8 \right) \]
11. \[\frac{18}{-3} \]
12. \[\left(-17 \right) - (9) \]

122
13. \(-10 \cdot (20) \cdot (-5) \cdot (-3)\)
14. \[-\frac{15}{16} + \frac{3}{4}\]
15. \(\frac{5}{12} - \left(-\frac{7}{8}\right)\)

به اعشاری تبدیل کنید:
16. \(3.261 \times 10^6\)
17. \(4.1 \times 10^{-4}\)

به نوشته‌های ساینی تبدیل نمائید:
18. \(0.01432\)
19. \(43,210\)

ساده نمائید:
20. \((7a^2b^4)(-2a^4b^3)\)
21. \(\frac{54x^{-4}y^2z^2}{9x^{-3}y^{-2}z^4}\)

22. \(\sqrt[4]{81}\)
23. \(\sqrt[5]{-32}\)
24. \(\frac{b-a^1}{a-b^1}\)
25. \(\frac{(x/y) + (y/x)}{2y - xy + x^2}\)

26. \((\sqrt{3} - \sqrt{7})(\sqrt{3} + \sqrt{7})\)
27. \((5x^2 - \sqrt{2})^2\)
28. \(8\sqrt{5 + \frac{25}{\sqrt{5}}}\)
29. \((x + t)(x^2 - xt + t^2)\)

30. \((5a + 4b)^3\)
31. \((5xy - 7x^2y^4 + 4x^2 - 3) - (-3xy^4 + 2xy^2 - 2y + 4)\)

حد ششم را در یافته کنید:
32. \((a + b)^7\)
انکشاف بدهید:

35. \(12a^3 - 27ab^4\)

37. \(9x^3 + 35x^2 - 4x\)

39. \(27x^6 + 125y^6\)

41. \(\frac{\sqrt[3]{a+b}}{\sqrt[6]{(a+b)^2}}\)

33. \((x - 2y)^4\)

34. \(\frac{3}{x} + 2x - 3x - 6\)

36. \(24x + 144 + x^2\)

38. \(8x^3 - 1\)

40. \(\sqrt{\frac{x^2}{y^2}}\)

42. \(\frac{3}{5}\)

43. \(\sqrt[8]{\frac{m}{n^3}}\)

44. \(\frac{\frac{2}{3}x - 12}{x + 4x + 4} \div \frac{x - 2}{x + 2}\)

45. \(\frac{x}{\frac{2}{x} + 9x + 20} - \frac{4}{\frac{2}{x} + 7x + 12}\)
مخرج را ناطق سازید:

\[
\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}
\]

مشخصه های رابطه های ذیل را واضح نمایید:

46. \(t + (-t) = 0 \)
47. \(t + (-t) = 0 \)
48. \(8(a + b) = 8a + 8b \)
49. \(-3(ab) = (-3a)b \)
50. \(tx + xt \)

ضرب کنید. فرض نمایید که تمام توان‌ها اعداد ثام اند:

51. \((n^4 + 10)(n^4 - 4) \)
52. \(\frac{a^2}{(t + t)} \)
53. \((y - z)(y + z) \)
54. \(\frac{n^m}{(a - b)} \)

فیکتور کنید:

55. \(\frac{2^m}{y + 16y + 64} \)
56. \(\frac{2^t}{x - 3x - 28} \)
57. \(\frac{3n}{m - m} \)

ساده کنید:

58. \(\frac{n+1}{(2x)^n}(\frac{n+1}{5}) \)
59. \(\frac{\frac{n}{(2x)}(\frac{n}{5})}{(n-1)(n-2)(n-3)} - \frac{n(n-1)(n-2)(n-3)}{2 \times 3 \times 4} \)
فصل دوم

معادله و غیر مساواته:

اهداف: شما قادر خواهید شد که معادلات ساده را با استفاده از قواعد جمع، ضرب، قانون حاصل ضرب صفر، حل کنید.

تعريف اول

۱- حل معادلات و غیر مساواته

الف: حل و سیت های حل

تعريف: حل یک معادله عبارت است از بدست آوردن عدد ویا اعدادی که اگر به عوض متحول در معادله حل شده وضع گردد معادله مذکور را تکان نماید.

مثال: عدد ۳ حل معادله ۱۵ = ۵xb ، زیرا اگر عدد ۳ با متحول (x) درین معادله تعیین گردد، هر دو طرف معادله مساوی میشود.

لذا عدد (3) حل این معادله میباشد. هر گاه عوض x درین معادله عدد (4)

کداشته شود معادله برهم میخورد، لذا عدد (4) حل معادله نیمیباشد.

تعريف دوم:

تعم حل های یک معادله بنام سیت حل یاد میگردد.

مثال: در معادله ۲y - ۲y - ۲ = x برای دو رقم ۰ و ۱ تعیین

نمايش: معادله تحقق میابد. لذا حل معادله مذکور عبارت است از سیت (0,۱).
تمرين:

حل معادلات را طور مهام پیدا کنید.

1. \(x - 2 = 7 \)

2. \(\frac{2}{y} + y = 0 \)

طريق حل - معادله:

طريقة جمع و ضرب:

(الف) طريقة جمع:

برای اعداد حقیقی \(a, b, c \) اگر این معادلات \(a = b \) برقرار باشد، پس \(a + c = b + c \) نیز صحیح می‌باشد.

با توجه به شکل قاعده فوق، در مورد تفایل کردن عین عدد از هر دو طرف معادله، و تقسیم هر دو طرف معادله به عین عدد نیز صداق می‌کند.

مثال اول 15 = 4 + 3x حل کنید:

\[
3x + 4 = 15
\]

امتحان معادله:

\[
3x + 4 + (-4) = 15 + (-4)
\]

\[
3x = 11
\]

\[
\frac{X3x}{3} = \frac{X11}{3}
\]

\[
x = \frac{11}{3}
\]

سپت حل معادله با سبیل \((3/11)\) نشان داده می‌شود. با مختصراً

127
سيت حل معادله است. (3/11).

مثال دوم:

(1) \(8 - 14 = 2x - 7 \) حل نتائج؟

امتحان معادله:

\[
3 \frac{7 - 2x}{x - 1} = 14 - 8 \frac{x - 1}{x - 1}
\]

حل:

\[
\begin{align*}
21 - 6x &= 14 - 8x + 8 \\
8x - 6x &= 22 - 21 \\
2x &= 1 \\
x &= 1/2
\end{align*}
\]

حل معادله مذكور عبارة است. از:

\[
x = \frac{1}{2}
\]

مثال سوم:

 حل نتائج:

\[-x + x + 3 = -x + x
\]

\[3 = 0\]

اين معادله حل ندارد، لذا، معادله غلط است.

تمرين:

حل نتائج:

3. \(9x - 4 = 8 \)

4. \(-4x + 2 + 5x = 3x - 15 \)
5. $3(y - 1) - 1 = 2 - 5(y + 5)$
6. $x - 7 = x$
7. $2x + 6 = 2x - 4$

معیار حاصل ضرب صفر:

قاعده حاصل ضرب صفر:

برای اعداد حقیقی a و b, اگر $ab = 0$ باشد، پس $a = 0$ یا $b = 0$ باشد پس 0 می‌باشد.

به عبارت دیگر اگر $ab = 0$ باشد پس $a = 0$ یا $b = 0$ باشد.

و تا کننده‌ی این معادله را به طریقه‌ی فوق حل می‌نماییم، یا به عبارت دیگر، به دو طرف معادله و حاصل ضرب (فیکتور) به طریق دیگر معادله باشند. بعداً حل معادله از طریق می‌گیرد.

مثال چاره: این معادله را حل نمایید:

\[
\frac{2}{x} + x - 12 = 0
\]

\[
\frac{2}{x} + x - 12 = 0
\]

\[
(x + 4)(x - 3) = 0
\]

(1) معادله را فیکتور نمایید

(2) هر توس را جداگانه مساوی به صفر قرار بدهید...

\[
x = -4 \quad \text{یا} \quad x = 3
\]

جواب: \{-4, 3\}
مثال یکم:

این معادله را حل نمائید:

\[2x^3 - x^2 = 3x. \]

حل:

\[2x^3 - x^2 - 3x = 0 \]
\[x(2x^2 - x - 3) = 0 \]
\[x(2x - 3)(x + 1) = 0 \]
\[x = 0 \quad 2x - 3 = 0 \]
\[x = \frac{3}{2} \]

\[x = 0, \quad x = \frac{3}{2} \]

جواب (سیت حل):

\[x = 0, \quad x = \frac{3}{2} \]

پنجم: از 8-13 حل کنید:

8. \((x - 7)(2x + 3) = 0 \)
9. \(\frac{2}{x} - x = 20 \)
10. \(\frac{2}{x} = 5x \)
11. \(2x^2 + 10x + 1 = 0 \)
12. \(3x^3 - 11x^2 = 4x \)
13. \(5x^3 + \frac{2}{x} - 5x - 1 = 0 \)

\[\frac{2}{x}(5x + 1) - 1 (5x + 1) = 0 \]

به عبارت

چهار عدد گیر مساله (به چهار عدد گیر مساله):

قواعد حل مسائل مشابه قواعد حل معادله می‌باشد. می‌توانیم این عدد را به هر دو طرف غیر مساله جمع نمائیم. همچنین می‌توان هر دو طرف غیر مساله را به یک عدد که غیر صفر باشد ضرب کرد، اما اگر هر دو طرف را به عدد منفی ضرب

\[x + 1 = 0 \]
\[x = -1 \]
\[x = \frac{3}{2} \]
مینماییم در آنصورت علائم غیر مسأوات را معکوس (جهت مخالف) می‌باشیم.

مثال ۶ :

نامساوات های ذیل را حل کنید :

\[3x < 11 - 2x = ? \]
\[3x < 11 - 2x . \]
\[3x + 2x < 11 \]

به هر دو طرف از ۲ جمع شده

\[5x < 11 \]

\[x < \frac{11}{5} \]

هر دو طرف به ضرب کنید .

\[\times 5 \]

\[11 \]

\[5 \]

\[x < \frac{5}{11} \]

هر عددی که از ۱۱/۵ کمتر باشد ، جواب معادله است .

یا \(\{ x/x < 11/5 \} \)

مثال ۷ :

این غیر مساوات را حل نمایید :

\[16 - 7y \geq 10y - 4 . \]

به هر دو طرف معادله ۱۶- جمع می‌کنیم \(4 - y \geq 10 + 16 - 16 + 16 - 7y \geq 10 - 20 \)

به منفی ۱۷ ضرب می‌نمائید .

\(y \leq 20/17 \)
هم عدد کمتر یا مساوی به 17/20 حل این غیر مساوات میباشد 17/20 < y سپت

حل معادله فوق: این \(y \geq \frac{17}{10} \) میباشد.

تکین: 14-16، حل نمایید.

14. \(5x > 12 - 3x \)
15. \(17 - 5y \leq 8y - 5 \)
16. \(12x - 6 < 10x + 1 \)

\[
\frac{5}{2} \leq x
\]
17. \(x \geq \frac{5}{2} \)

17-19 سیت ها را نوشت کنید:

18. \(y \geq -7 \)
19. \(x = 5 \).

مثال 8:

تعیض مجاز را در افاده \(\sqrt{4 - 5x} \) معلوم کنید. تعیض مجاز افاده فوق عبارت از

عددی است که قیمت افاده فوق را بزرگتر از صفر یا مساوی به صفر بسازد.

حل: \(0 \geq 4 - 5x \)

\[
5x \geq 4
\]

\[
x \geq \frac{4}{5}
\]

\(x/x \geq \frac{4}{5} \)

سپت حل معادله: \(\left(x/x \geq \frac{4}{5} \right) \)

122
التمرين:
تعريض مجاز را در يافته كنيد.

20. $\sqrt{x - 2}$
21. $\sqrt{x + 3}$
22. $\sqrt{22 - 4x}$

التمرين 1 - 2:

معادلات و نامسوات حان ضيل را حل كنيد:

1. $4x + 12 = 60$
4. $2y - 11 = 37$
7. $5x - 2 + 3x = 2x + 6x - 4x$
10. $5x - 17 - 2x = 6x - 1 - x$
13. $2x - (5 + 7x) = 4 - [x - (2x + 3)]$
14. $y - (9y - 8) = [5 - 2y - 3(2y - 3)] + 29$
15. $(2x - 3)(3x - 2) = 0$
16. $(5x - 2)(2x + 3) = 0$
17. $x(x - 1)(x + 2) = 0$
18. $x(x + 2)(x - 3) = 0$

132
19. \(3x^2 + x - 2 = 0\)
20. \(10x^2 - 16x + 6 = 0\)

21. \((x - 1)(x + 1) = 5(x - 1)\)
22. \(6(y - 3) = (y - 3)(y - 2)\)

23. \(x[4(x - 2) - 5(x - 1)] = 2\)

24. \(\frac{1}{14}(x - 4) - \frac{(x + 2)}{14} = (x + 2)(x - 4)\)

25. \((3x^2 - 7x - 20)(2x - 5) = 0\)
26. \((8x + 11)(12x^2 - 5x - 2) = 0\)

27. \(16^3 = x\)
28. \(9x = x\)

29. \(2^2 = 6x\)
30. \(18x + 9^2 = 0\)

31. \(3^3 - 5y^2 - 2y = 0\)
32. \(3t + 2t = 5t^2\)

33. \((2x - 3)(3x + 2)(x - 1) = 0\)
34. \((y - 4)(4y + 12)(2y + 1) = 0\)

35. \((2 - 4y)(y + 3y) = 0\)
36. \((y^2 - 9)(y^2 - 36) = 0\)

37. \(x + 6 < 5x - 6\)
38. \(3 - x < 4x + 7\)

39. \(3x - 3 + 2x > 1 - 7x - 9\)
40. \(5y - 5 + y < 2 - 6y - 8\)

41. \(14 - 5y \leq 8y - 8\)
42. \(12x - 6 < 10x + 4\)

43. \(-\frac{3}{4}x > -\frac{5}{8} + \frac{2}{x}\)
44. \(-\frac{5}{6}x < \frac{3}{4} + \frac{8}{3}x\)

45. \(4x(x - 2) < 2(2x - 1)(x - 3)\)
46. \((x + 1)(x + 2) > x(x + 1)\)
جوابات را با طرز سیت بنویسید:

47. \(x > 2.5 \)
48. \(y < -7 \)
49. \(2t = 10 \)
50. \(\frac{3}{m} + 3 = \frac{2}{m} - 2 \)

تعیین مجاور روابط ذیل را دریافت کنید:

51. \(\sqrt{x - 3} \)
52. \(\sqrt{2x - 5} \)
53. \(\sqrt{3 - 4x} \)
54. \(\sqrt{x^2 + 3} \)

55. \(2.905x - 3.214 + 6.789x = 3.012 + 1.805x \)

56. \((13.14x + 17.152)(15.15 - 7.616x) = 0 \)
57. \(3.12x^2 - 6.715x = 0 \)

58. \(9.25x^2 + 18.03x = 0 \)
59. \(1.52 (6.51x + 7.3) < 11.2 - (7.2x + 13.52) \)
60. \(4.73 (5.16 + 3.62) > 3.005 (2.75y - 6.31) \)

حل کنید:

61. \(7x^3 + x - 7x - 1 = 0 \) [کمک: \(x (7x + 1) - 1 (7x + 1) = 0 \)]
62. \(3x^3 + x^2 - 12x - 4 = 0 \)
63. \(\frac{3}{y} + \frac{2}{y} - y - 2 = 0 \)
64. \(t^2 - 25t - 25 = 0 \)
65. \(\frac{2}{x} - x - 20 = \frac{2}{x} - 25 \)
66. \((x + 1)^3 = (x - 1)^3 + 26 \)
67. \((x - 2)^3 = x - 2 \)
اتهاده:

با تکمیل کردن این مبحث شما قادر خواهید شد که:
- تشخیص ویژگی که کدام معادله ها با هم معادل اند و معادله های کسری را حل کرده بتوانید.
- نشان دهید که آیا هر جوره معادله باهم معادل اند یا خیر؟

الف) معادلات معادل:

تعريف: معادلاتی که یکی از آنها یکدیگر را با هم معادل اندهد. در مثال، معادله اول و سه باهم معادل اندهد. زیرا معادله (1) به 4-ضرب گرده و معادله (3) از آن بدست آمده است.

مثال اول:

\[
\begin{align*}
(1) & \quad 3x = 6 \\
(2) & \quad 3x + 5 = 11 \\
(3) & \quad 12x = -24
\end{align*}
\]

جوره معادلات در مثال دوم و مثال سوم معادل نمی‌باشند.

مثال دوم: جوره معادلات:

\[
3x = 4x \quad \frac{3}{x} = \frac{4}{x}
\]

\(0\) حل ندارد \(0\) سیت حل تقسیم بر \(0\) است.
مثال سوم: جوره معادلات:

باهم معادل نمی‌باشند.

\[x = 1 \]
\[\frac{2}{x} = x \]

(1) سیت حل

\[\text{سیت حل} (0, 1) \]

تمرین:

دریافت کنید که آیا جوره معادلات باهم‌دیگر معادل اند؟

1. \[
\begin{dcases}
3x = 7 \\
-15x = -35
\end{dcases}
\]

2. \[
\begin{dcases}
x = 7 \\
5x = 35
\end{dcases}
\]

3. \[
\begin{dcases}
x = -5 \\
\frac{2}{x} = 25
\end{dcases}
\]

4. \[
\begin{dcases}
x = -5 \\
x + 1 = -4
\end{dcases}
\]

5. \[
\begin{dcases}
\frac{(x - 2)(x + 8)}{x - 2} = x + 8 \\
x + 8 = x + 8
\end{dcases}
\]

6. \[
\begin{dcases}
3x = 5x \\
3x = 5
\end{dcases}
\]

قواعد حل معادلات را از نگاه معادلات معادل بررسی می‌نماییم.

مثال ذیل را با شرح قاعده جمع در نظر بگیرید:

\[x + 5 = 9 \]

\[x + 5 = 9 \]

(5-) را هر دو طرف جمع می‌نماییم:

\[x = 4 \]

\[a = b \]

\[a + c = b + c \]

مثال: از مسایلات با هم جمع کردن حرف c به هر دو طرف معادله مسایلات ذیل

\[a = b \]
را بدست میاوریم \(a + c = b + c \) و اگر \(c \) - را به هر دو طرف معادله مساوات جمع نمائید

دوباره مساوات اولی بست می‌ایست. هرین قسم، ماهر در طرف مساوات را با عین عدد ضرب و تقسیم کرده میتوانیم و در نتیجه تغییر وارد نمی‌شود.

(ب) : معادلات کسری:

معادلاتی که این‌گونه هستند، یک دو مرحله‌ای داشته باشند، بنابراین معادلات کسری یاد می‌گردد. حال این معادلات با ضرب کردن تحویل ها به طریق آسانتر بدست می‌آید.

مثال چاره:

حل نتایج:

\[
\begin{array}{c}
\frac{3}{x} = \frac{4}{x} \\
\frac{3}{x} = \frac{4}{x}
\end{array}
\]

هر دو طرف معادله را به \(x^2 \) ضرب کنید.

\[
\begin{array}{c}
x^2 = \frac{3}{x} \times \frac{4}{x} \\
x^2 = \frac{3}{x} \times \frac{4}{x}
\end{array}
\]

به هر دو طرف معادله \(x^3 = 4x \) - جمع نمایید.

\[
\begin{array}{c}
0 = x
\end{array}
\]

در معادله فوق قیمت \(x = 0 \) حل معادله بوده، در حالیکه حل معادله اولی نیست. بنابراین حل اساسی معادله دریافت شد، لازم است که قیمت حل را در معادله اولی تعیین نموده و بعد از امتحان در معادله اولی حل معادله را قبول کرده می‌توانیم.

\[\text{توجه: هنگامی‌که هر دو طرف معادله را بامتحان ضرب و یا تقسیم می‌نمایید،}

\[\text{جواب آن معادله را در صورت حل‌پذیر امتحان کردن قبول نمایید!} \]

128
تمرين : 7-8 :
7. تشریح کنید که پلور $5x^2 + 2x + 5x^2 = 0$ را از $0 = 2x$ را خود آورده می‌توانید.
8. تشریح کنید که پلور $0 = 2x$ را از $0 = 2x + 5x^2$ بدست آورده می‌توانید.

مثال 5 : حل کنید

\[
\frac{x - 3}{x - 7} = \frac{4}{x - 7}
\]

\[
\frac{x - 3}{x - 7} = \frac{4}{x - 7}
\]

\[
(x - 7) \times \frac{x - 3}{x - 7} = (x - 7) \times \frac{4}{x - 7}
\]

\[
x - 3 = 4
\]

\[
x = 7
\]

حل احتمالی 7 می‌باشد و ما آنرا امتحان می‌نماییم.

امتحان معادله:

\[
\frac{x - 3}{x - 7} = \frac{4}{x - 7}
\]

احیایش : چون معادله را به متحول ضرب کردید بعضاً جواب ، امتحان کردن معادله شرط است لی
إحتمال: امتحان كردن را فراموش نکنید!

تمرین 9-11 حل نمایید

9. \(\frac{-5}{x} = \frac{7}{x} \)

10. \(\frac{x+4}{x+5} = \frac{-1}{x+5} \)

11. \(\frac{2x-7}{x+4} = \frac{5}{x+4} \)

مثال ششم: حل کنید.

\[\frac{2}{x} = \frac{9}{x-3} \]

\[\frac{2}{x} = \frac{9}{x-3} \]

\[(x-3) \times \frac{2}{x-3} = (x-3) \times \frac{9}{x-3} \]

هر دوطرف معادله را به \((x-3)\) ضرب نمودیم.

\[\frac{2}{x} = 9 \]

\[\frac{2}{x} - 9 = 0 \]

\[(x+3)(x-3) = 0 \]
احتياط
إذاً جواباً ولا ياسب من التحويل العمر

\[x = -3 \quad \text{و} \quad x = 3 \]

瑾 جان ماجدة را بـ الطريق ضرب كردن تحويل حل نموديز لذا،
حل احتمال (3) و (3) را من ماجدة اول، بعد اس انتظام كردن قبلي كرده

ميتواه.

امتحان

<table>
<thead>
<tr>
<th>3: (\frac{9}{x})</th>
<th>3: (\frac{9}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x - 3)</td>
<td>(x - 3)</td>
</tr>
<tr>
<td>(\frac{9}{3})</td>
<td>(\frac{9}{3})</td>
</tr>
<tr>
<td>(3 - 3)</td>
<td>(3 - 3)</td>
</tr>
<tr>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

(3-) جواب درست است (3 - 3) جواب، و جواب 3 غلط است.

امتحان

\[\frac{\frac{2}{y}}{y + 4} = \frac{16}{y + 4} \]

\[\frac{\frac{2}{x}}{x - 5} = \frac{36}{x - 5} \]

13.
مثال حل‌شماره: حل نسخه

\[
\frac{14}{x+2} - \frac{1}{x-4} = 1
\]

هر در طرف معادله را به کوچکترین مخرج مشترک: \((4-x)(2+x)\) ضرب می‌نمانیم:

\[
\frac{14(x+2)(x-4)}{x+2} - \frac{1(x+2)(x-4)}{x-4} = (x+2)(x-4) \times 1
\]

\[
14(x-4) - (x+2) = (x+2)(x-4)
\]

\[
14x - 56 - x - 2 = x - 2x - 8
\]

\[
13x - 58 = \frac{2}{x} - 2x - 8
\]

\[
0 = x - 15x + 50
\]

\[
0 = (x - 10)(x - 5)
\]

\[
x = 10, \quad x = 5
\]

حل‌های احتمالی عبارت اند از 10 و 5. پاسیت حل مساله است به \(
\{10, 5\}\)
معلوم کنید. که آیا این معادله‌های جوره با هم معادل اند یا خیر؟

1. \[
\begin{align*}
\begin{cases}
3x + 5 &= 12 \\
3x &= 7 \\
\frac{2}{x} &= 9
\end{cases}
\end{align*}
\]

2. \[
\begin{align*}
\begin{cases}
\frac{2}{x} &= -7x \\
x &= -7
\end{cases}
\end{align*}
\]

3. \[
\begin{align*}
\begin{cases}
x &= 3 \\
\frac{2}{x} &= 9
\end{cases}
\end{align*}
\]

4. \[
\begin{align*}
\begin{cases}
2y + 1 &= -3 \\
8y + 1 &= -12
\end{cases}
\end{align*}
\]

5. \[
\begin{align*}
\begin{cases}
\frac{(x - 3)(x + 9)}{(x - 3)} &= x + 9 \\
x + 9 &= x + 9
\end{cases}
\end{align*}
\]

6. \[
\begin{align*}
\begin{cases}
\frac{2}{x} + x - 20 &= 0 \\
\frac{2}{x} - 25 &= 0
\end{cases}
\end{align*}
\]

حل نماید:

7. \[
\begin{align*}
\frac{1}{4} + \frac{1}{5} &= \frac{1}{t}
\end{align*}
\]

8. \[
\begin{align*}
\frac{1}{3} - \frac{5}{6} &= \frac{1}{x}
\end{align*}
\]

9. \[
\begin{align*}
\frac{3}{x - 8} = \frac{x - 5}{x - 8}
\end{align*}
\]

10. \[
\begin{align*}
\frac{23}{y} = \frac{-5}{y}
\end{align*}
\]

11. \[
\begin{align*}
\frac{x + 2}{4} - \frac{x - 1}{5} &= 15
\end{align*}
\]

12. \[
\begin{align*}
\frac{t + 1}{3} - \frac{t - 1}{2} &= 1
\end{align*}
\]

13. \[
\begin{align*}
x + \frac{6}{x} &= 5
\end{align*}
\]

14. \[
\begin{align*}
x = \frac{12}{x} + 1
\end{align*}
\]
15. \(\frac{x + 2}{2} + \frac{3x + 1}{5} = \frac{x - 2}{4} \)

16. \(\frac{2x - 1}{3} - \frac{x - 2}{5} = \frac{x}{2} \)

17. \(\frac{1}{2} + \frac{2}{x} = \frac{1}{3} + \frac{3}{x} \)

18. \(\frac{1}{t} + \frac{1}{2t} + \frac{1}{3t} = 5 \)

19. \(\frac{4}{x - 1} - \frac{2}{x - 1} = \frac{3}{x + 1} \)

20. \(\frac{3y + 5}{y + 4} = \frac{y + 1}{y} \)

21. \(\frac{1}{2t} - \frac{2}{5t} = \frac{1}{10t} - 3 \)

22. \(\frac{3}{m + 2} + \frac{2}{m - 2} = \frac{4m - 4}{m - 4} \)

23. \(1 - \frac{3}{x} = \frac{40}{2^x} \)

24. \(1 - \frac{15}{y} = \frac{2}{y} \)

25. \(\frac{11^2 - t}{3t^2 - 5t + 5} = \frac{2t + 3}{3t - 2} - \frac{t - 3}{t - 1} \)

26. \(\frac{1}{3y^2 - 10y + 3} = \frac{6y}{9y - 1} + \frac{2}{1 - 3y} \)

27. \(\frac{2.315}{y} - \frac{12.6}{17.4} = \frac{6.71}{7} + 0.763 \).
28. \[\frac{6.034}{x} - 43.17 = \frac{0.793}{x} + 18.15 \]

29. \[\frac{(x - 3)^2}{x - 3} = x - 3 \]

30. \[\frac{\frac{2}{x} + 6x - 16}{x - 2} = x + 8 \]

31. \[\frac{\frac{2}{x} + 8}{x + 2} = \frac{x}{x} - 2x + 4 \]

32. \[\frac{x + 8}{x - 2} = \frac{8 + x}{-2 + x} \]

33. \[\frac{x + 3}{x} = 3 \]

نشان بدهید که این معادلات یکی بعد دیگر باهم معادل‌اند؟

34. \[\frac{2}{x} - x - 20 = \frac{2}{x} - 25 \] (1)

\[(x - 5)(x + 4) = (x - 5)(x + 5) \] (2)

\[x + 4 = x + 5 \] (3)

\[4 = 5 \] (4)

معادلاتی که برای تمامی معادلات های جایی می‌توانند صدق می‌کنند، بنام مطابقت‌ها یاد می‌شوند.

دریافت نتایج که کدام یک از این معادلات مطابقت‌ها می‌باشند?!
35. \(\frac{2}{x} + 6x - 16 \) \(x - 2 \) = \(x + 8 \)
36. \(x + 4 = 4 + x \)

37. \((x - 1)(\frac{2}{x} + x + 1) = \frac{3}{x} - 1 \)
38. \(\frac{x + 8}{x - 4} = \frac{x - 2}{x - 2} \)

39. \((x + 7) = x + 49 \)
40. \(\sqrt{\frac{2}{x} - 16} = x - 4 \)

41. \(\frac{x + 3}{x + 2} - \frac{x + 4}{x + 3} = \frac{x + 5}{x + 4} - \frac{x + 6}{x + 5} \)
2.3 بعضی فرمول‌های الجبری و طرز حل آنها:

اهداف:
با تکمیل کردن این مبحث شما قادر خواهید شد که:
الف: یک فرمول را از جنس یک متحول حل کنید.
ب: طرز حل یک پرتابل را بکار برده پرتابل‌های تطبیقی را حل نمایید.

قوانین ها:

فرمول عبارت از یک دستور العمل برای محاسبه کردن است. بطور مثال:
مساحت سطحی یک مخروط را از جنس ارتفاع مایل (S) و شعاع قاعده (r) نشان می‌دهد.

\[A = \pi rs + \pi r^2 \] I

به کمک فرمول فوق ما می‌توانیم ارتفاع مایل (S) مخروطی که مساحت و شعاع قاعده (A, r) آن را داشته باشیم، معلوم کنیم:

\[A = \pi rs + \pi r^2 \]
\[A - \pi r^2 = \pi rs \]

\[\frac{A - \pi r^2}{\pi r} = s \]
\[\frac{A}{\pi r} - r = s \]

\[S = \frac{A}{\pi r} - r. \]

\[S = \frac{A}{\pi r} - r. \]
مثال دیگر: از فرمول \(\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} \) (1) را معلوم کنید.
درین فرمول، در مقاومت \(r_1 \) و \(r_2 \) بقسم موزی در یک سرکت برقی با هم وصل گردده اند.

\[
\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} \quad (1)
\]

\[
\frac{R}{r_1 r_2} X = \frac{R}{r_1} + \frac{R}{r_2}
\]

\[
\frac{R}{r_1 r_2} X = \frac{R}{r_1} + \frac{R}{r_2}
\]

\[
r_{12} = (r_1 + r_2)R
\]

\[
\frac{r_1 x r_2}{r_1 + r_2} = R
\]

148
حل پروBLEM

مطلب از حل پرآماج تطبیقی آن است که با بکار رفتن تکنیک ریاضی جواب سوالات مطرح شده بدست می آید. اگر چه بعضی پرآماج ها شاید شفاهی حل کردنده ولی اکثریت آنها به کمک طرز العمل عمومی حل میشوند. نخست از پرآماج یک مفکوره گرفته، و بعداً مفکوره را به لسان ریاضی در آورده، سپس به محسوبه می‌پردازیم.

تمرین:

این فرمول را برای یک حل کنید.

\[
\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2}
\]

۲. در این فرمول F را معلوم کنید.

\[
C = \frac{5}{9} (F - 32)
\]

۱.
 نقطه غلیان آب

 نقطه انجماد آب

 درجه حرارت اتاق

 نقطه انجماد آب

 نقطه غلیان آب

 میزان الحرارت فارنهایت

 میزان الحرارت سانتی‌گراد

 212° F
 200° F
 190° F
 180° F
 170° F
 160° F
 150° F
 140° F
 130° F
 120° F
 110° F
 100° F
 90° F
 80° F
 70° F
 60° F
 50° F
 40° F
 30° F
 20° F
 10° F
 0° F
 -10° F
 -20° F

 F° = 2/3 C° + 32
پروسهٔ چاره‌برداری یک حل پرتابل‌ها

1. آشناشدن با پرتابل:
نخست خود را با چگونگی پرتابل آشنا شوید. اگر پرتابل به شکل تحریری باشد آنرا با بسیار دقیق مطالعه نمایید.
الف: نمای تختیکی پرتابل را ترسیم نمایید.
ب: لست عناصر معلوم و عناصری که قیمت آنها مطلوب است تکمیل نمایید.
ج: قلم معلومات را در یک چارت یا جدول تنظیم نمایید.

2. افاده‌یا ترجمه پرتابل:
پرتابل را به یک لسان ریاضی یا سیمبول افاده نمایید. بعد آنرا با قواعد الجبری طوری تنظیم نمایید که جهت ارایه مجهول ها حروف به کار برده شوند.

3. حل پرتابل:
پرنسپس ها و تحلیل های ریاضی را بکار برده، راه‌های حل احتمالی را در یافتن
نمایید. این موضوع در الجبر به مفهوم تشكیل معادله الجبری تلقی می‌شود. يعني معادله
الجبری را تشكیل و بعد آنرا حل نمایید.

4. امتحان نمودن پرتابل:
حل معادله را امتحان و ملاحظه کنید که حل معادله حالت های مشخص پرتابل را
تشریح کرده می‌تواند یا خیر؟
مثال چارم:

چند فیصد 84، مساری به 11.76 میشود؟

1) آشنا شدن به پرایلم: چند فیصد 84، مساری است به 11.76.

2) افاده یا ترجمه پرایلم: فرض یک % x

3) حل پرایلم

\(x \times 0.01 \times 84 = 11.76 \)

\(x \times 0.84 = 11.76 \)

\(x = \frac{11.76}{0.84} = 14 \)

\(1\% = 0.01 \)

4) امتحان

جواب 14%

مثال پنجم:

14% کدام عدد مساری به 11.76 میشود.

1) آشنا شدن با پرایلم:

2) افاده یا ترجمه پرایلم: فرض یک y

3) حل پرایلم

\((14\%) \times (84) = 11.76 \)

\((0.14) \times (84) = 11.76 \)

\(y = \frac{11.76}{0.14} = 84 \)

4) امتحان پرایلم:

جواب 84
تموین: 3-4 حل کنید:

3. چند فیصد 6.8 بایت؟
4. 24% یا 1.23 بیلیون؟
5. 75% (36%)؟

برابر می‌باشد به ریح مرکب:

مثال ششم:

یک مقدار سرمایه با مقدار 11% سالانه به شکل ریح مرکب سرمایه‌گذاری می‌شود.
در اخیر یک سال، سرمایه‌منذور به 1443$ می‌رسد. معلوم کنید که اصلاً چقدر پول
سرمایه‌گذاری شده بود؟
مراحل حل پرتابل:
1. آشنایی با پرتابل: چندین طریقه موجود اند که این پرتابل را به لسان
ریاضی افاده کنیم. اینکه: موضوع را چنین بررسی می‌شود.
مقدار پولیک سرمایه‌گذاری شده، با مقدار آن مبلغ 1443$ می‌شود.
2. افاده پرتابل: سرمایه‌اول که با 11% فاصله سرمایه‌گذاری شده به لسان
ریاضی چنین نوشته می‌توانیم:

\[x + 0.11x = 1443 \]

\[x + 0.11x = 1443 \]

\[x(1 + 0.11) = 1443 \]

\[1443 \]

\[x = \frac{1443}{1.11} = 1300 \]

جواب 1300 $
حال سرمایه گذاری را که از یک سال زیادتر باشد تحت مطالعه قرار می‌دهیم.

اگر ما P دالر را به منفاد i به شکل ربح مرکب، سرمایه گذاری کنیم، سرمایه‌ای A=\(p(1+i)\) انتهایی در اخیر یک سال خواهد بود.

در اخیر سال دوم، A=\([p(1+i)](1+i)\) در اخیر سال اول.

\[A = p(1+i) \]

در پایان سال سوم:

\[A = p(1+i)^3 \]

قضیه اول:

اگر سرمایه‌ای ابتدایی p، با فاصله (i%) (نرخ...) به شکل ربح مرکب برای t سال سرمایه گذاری شود، سرمایه انتهایی (A) با این فرمول محاسبه می‌شود:

\[A = p(1+i)^t \]

4 مدت زمان سرمایه در بانک.

مثال هفتم: 1000$ به مفاد 12% به ربح مرکب سالانه سرمایه گذاری شده است.

سرمایه‌های انتهایی بعد از مدت ده سال چند خواهد بود؟

جواب: 3105.85 $

\[A = p(1+i)^t \]

\[A = p(1+i)^{10} \]

\[A = 1000 (1.12)^{10} = 3105.85 \]

(توسط کالکولیتر)

= $3105.85
6. یک سرمایه به نرخ 7% ریح مربک سالانه کشاورزی میشود، سرمایه در اخیر یک سال به مبلغ 2782$ میرسد. چه پول سرمایه گذاری شده بود؟

7. فرضی 1000$ به نرخ مفاد 12.5% به ریح مربک سرمایه گذاری شده است.

بعد از گذشتند مدت 8 سال در حساب بانکی این معامله چه مقدار پول موجود خواهد بود؟

بعضی اوقات سرمایه گذاری، عوض نرخ سالانه به چندین نرخ در یک سال سرمایه گذاری میشود. مثلاً چار دفعه در سال، یا (به چارم حسی یک سال سرمایه گذاری میشود). پس درین صورت مدت فایده 1/4 حسی سال میشود. که در اینصورت فاایده برای مدت 4/1 سال عبارت است از:

\[A = p(1+i)^n \]

ندیه مقدار مربک شده

تعداد n مقدار مربک شده

(مدتی مقدار) از t به 4\(\text{ سال} \)

\[A = p \left(1 + \frac{i}{4} \right)^t \]

فورمول ریح وار سالانه:

افتخار حکم:

اگر سرمایه ابتداهی p دالر با مفاد (i) دفعه در یک سال به شکل ریح مربک سرمایه گذاری شده باشد، سرمایه انتهایی بعد از 1 سال را از رابطه ذیل محاسبه می‌کنیم:

155
کرده میتوانیم.

\[t \rightarrow \text{تعداد سال} \]

\[n \rightarrow \text{چند دفه در یک سال} \]

\[A = P \left(1 + \frac{i}{n} \right)^{nt} \]

مثال هشتم:
اگر 1000$ به نرخ 12% به چارح حساب سال به شکل ریج مرکب سرمایه گذاری شده باشد، سرمایه انتهایی بعد از ده سال چقدر خواهد بود؟

حل مثال 8:

\[n = 4 \]

\[t = 10 \]

\[A = P \left(1 + \frac{i}{n} \right)^{nt} = 1000 \left(1 + \frac{0.12}{4} \right)^{4 \times 10} \]

\[= 1000 \times (1.03)^{40} \]

\[\approx 3262.04 \]

\[\approx \$ 3262.04 \]

جواب

حل پرباصل مربوط به مساحت:

مثال نهم:

شمعی یک حوض آب بازی دایره‌ای 10 فت است. یک پیاده رو به دارایی عرض یک سان بوده، به گرداگرد حوض ساخته می‌شود. اگر مساحت پیاده رو (44) فت مربع بوده باشد، عرض پیاده رو را دریافت کنید.

این موضوع در چارت (شکل) ذیل دقتاً تشريح شده است:
1- آشنایی شدن به پرکیل: نخست رسم تکنیکی پرکیل تهیه می‌شود.

میدانیم که مساحت دایره عبارت است از:

\[P = \pi \times 10 = 100 \pi \]

مساحت پیاده رو، و جمع مساحت حوض:

\[A = \pi \times (10 + x) = \pi \left(100 + 20x + \frac{x^2}{2} \right) \]

2- افاده پرکیل:

مساحت

\[\text{پیاده رو} = \text{حوض} - \text{پیاده رو} + \text{حوض} \]

\[\pi \left(100 + 20x + \frac{x^2}{2} \right) - 100\pi = 44 \pi \]

3- حل پرکیل:

هر دو طرف معادله را به جای II ضرب می‌نماییم.

\[44 = 100 + 20x + \frac{x^2}{2} - 44 \]

\[\frac{x^2}{2} + 20x = 44 \]

\[\frac{x^2}{2} + 20x - 44 = 0 \]

\[(x + 22)(x - 2) = 0 \]

\[x = -22 \quad \text{یا} \quad x = 2 \]

\[x = -22 \quad \text{یا} \quad x = 2 \]
نحوه محاسبه سرعت:

d = فاصله

(سرعت)

\[
\frac{d}{r} = \frac{d}{t}, \quad t = \frac{d}{r}
\]

مثال دهم:

یک کشتی به فاصله 246 کیلو متر هم سمت آب دریا و 180 کیلو متر مخالف جریان آب دریا حرکت می‌کند. وقت سفر به هر در قسمت مساوی است، سرعت آب دریا 5.5 km/hr. سرعت کشتی را در آب استاده معلوم کنید.

1- آشنا شدن با پرایلم: نخست با تکمیل کردن رسم تخیلی تمام معلومات را در یک چوکات درج می‌نماییم. وقت رفت و آمد مساوی است و آنرا به 4 نشان میدهیم.
فاصله طرف بالایی دریا (فاصله طرف پایینی) سرعت آب دریا

5.5km / hr . 190km 246km

سرعت کشتی در آب استاده ---->

فاصله (سرعت آب)+ (سرعت کشتی)

\[d = 246\text{km} \quad r + 5.5 = ? \]

وقت \[t = \] \(\text{فاصله} \quad \text{سرعت} \quad \text{وقت} \)

فاصله 246 پایین دریا (موافق جریان)

بتفری بالایی دریا (مخالف جریان)

\[r = \frac{d}{t} \quad (1) \]

\[t = \frac{246}{r + 5.5} \quad \text{فرت ر آمد مساوی است .} \]

چون وقت (1) رفت ر آمد مساوی است .

\[t = \frac{180}{r - 5.5} \quad (2) \]

معادله (1) و (2) با هم مساوی اند .

109
246 180

\[t = \frac{180}{r + 5.5} = \frac{246}{r - 5.5} \]

\[r = 35.5 \text{ km/hr}. \quad r = 35.5 \text{ km/hr} \]

 حل معادله

تمرین 10:

یک طیاره هم سمت با د فاصله 162 کیلومتر را در همان زمانی طی می‌کند که این طیاره میتواند فاصله 738 کیلومتر را مختص سمت حرکت با د طی نماید. سرعت طیاره موصوف در هوا ساکن 200 کیلومتر فی ساعت می‌باشد. سرعت با د را دریافت کنید.

مثال پایین‌اله:

سرعت کشتی در آب استاده 10 mil/hr است. کشتی مذکور به فاصله 24 میل مختص جریان آب، و به فاصله 24 میل موافق جریان آب، برای مدت مجموعاً 5 ساعت حرکت نموده است. سرعت جریان آب دریا را معلوم کنید.

ا- آشنایی با پریام: نخست رسم تکنیکی پریام را تکمیل کنید می‌نمایی.

میدانیم که سرعت کشتی 10mil/hr است. سرعت جریان آب را به حرف c نشان میدهیم.

موافق جریان دریا:

\[d_1 = 24 \text{ mi} \quad t = \frac{1}{10 + c} \]

سرعت کشتی جمع سرعت آب

\[d_2 = 24 \text{ mi} \quad t = \frac{1}{10 - c} \]

سرعت کشتی منفی سرعت آب
ترجمه پرایلم:
چون از طرف دیگر

\[t = \frac{d}{r} \]

لذا

\[\frac{d_1}{r_1} + \frac{d_2}{r_2} = 5 \]

و همچنان

\[\frac{24}{10 + c} + \frac{24}{10 - c} = 5 \]

معادله فوق را برای \(c \) حل کنید...

\(c = 2 \text{mph} \)

چون سرعت منفی شده نمیتواند، لذا سرعت آب

مثال ۱۲:

پرایلم های مربوط به کار:

تایپیست A یک کار تایپیستی را در ۳ ساعت تکمیل می‌نماید، در حالیکه تایپیست B همان کار تایپیستی را در ۵ ساعت تکمیل کرده می‌تواند. هر دو تایپیست، کار فوق را بقسم یکجاپی در چقدر وقت تمام خواهند کرد؟

۱- آشنای شدن با پرایلم:

تایپیست A کار را در ۳ ساعت انجام می‌دهد.

در حالیکه تایپیست B همان کار را در ۵ ساعت انجام می‌دهد.

اگر هر دوی ایشان بهم یکجا کار نمایند، همان کار در ۴ ساعت تمام خواهد شد.

چون تایپیست A در ظرف یک ساعت، ۱/۳ حس کار انجام می‌دهد در حالیکه

۱۶۰
مثال 12:
در ساختن یک دیوار، احمد نظر به محمود 9 ساعت زیاد تر وقت ضرورت دارد که دیوار را به تعهدی اعین کند. اگر هر دوی ایشان یک ساعت دیگر کار کنند، دیوار مذکور

\[\text{پس هر دوی ایشان در ظرف یک ساعت، } 5/1+3/1 \text{ باهم کار را انجام داده می‌توانند.} \]

\[\text{اگر هر دوی ایشان یک ساعت دیگر در } 1/1 \text{ ساعت تمام کنند پس } (1/1) \text{ حسک کار را به قسم دسته جمعی در یک ساعت تمام خواهند کرد.} \]

\[\text{اگر با } (\text{لسان ریاضی}) t=1/5=1/5+3/1 \]

\[\text{لذا } \begin{align*}
\text{حل:} & \quad 1
\text{struction of a wall, Ahmed needs 9 more hours than Mahmoud. If both of them work an extra hour, they can complete the wall.}

\[\begin{align*}
\text{Example 12:} & \quad \text{At the construction of a wall, Ahmed needs 9 more hours than Mahmoud. If both of them work an extra hour, they can complete the wall.}
\end{align*} \]
را در 20 ساعت تکمیل می‌مانید. هر گاه هر کدام به تنهایی کار کنند، دیوار را دایم قدر وقت تمام خواهند نمود؟

طرح حل:

وقتیکه محمود دیوار را به تنهایی در 1 ساعت اعمارکند، پس وقت تنهایی احمد (9 + 1/t)
ساعت خواهد‌بود. احمد (1/t) حسی کار را در 9 ساعت تکمیل می‌کند، و محمود (9 + 1/t) نیز
حسی کار را در ظرف یک ساعت تکمیل کرده می‌توانند. در حالیکه هر دوی ایشان (9 + 1/t)
حسی کار را در یک ساعت تکمیل می‌کنند.)

مطالب فوق را به لسان ریاضی چنین نوشته کرده‌می‌توانیم.

\[
\frac{1}{t} + \frac{1}{t+9} = \frac{1}{20}
\]

اگر این معادله حل شود، 5 - t = 5 و 36 = 2t می‌شود. چون وقت منفی شده
نیستند، لذا 36 = 2t ، عمارة از تعداد ساعاتی است که احمد به تنهایی کار را انجام داده
می‌تواند. البته محمود این کار را به تنهایی در (9 + 36) ساعت که مساوی به 45 ساعت
می‌شود، تکمیل می‌نماید.

خمیری:

۱۱. یک ریل یک سی‌شیمن را ترک می‌گوید و به سرعت ۷۵ کیلومتر در ساعت طرف شمال سفر می‌کند. در ساعت بعد تر یکی دیگر موادی به ریل اولی در مسیر دیگر به سرعت ۱۲۵ کیلومتر در ساعت به سمت شمال حرکت می‌کند. چقدر از سی‌شیمن درfort
ریل دومی، ریل اولی را فرا می‌گیرد؟

۱۳. A یک چمن را در 4 ساعت در می‌کند، در حالیکه B یک چمن را در ظرف 5 ساعت در می‌کند. اگر هر دوی A و B پکچایی چمن را در 4 ساعت کنند، چقدر وقت را دربر خواهند گرفت؟
مثال ۱۴:

احمد و محمود پیک کار معمولی را بقسم یکجا در ظرف ۴ ساعت انجام داده میتوانند. اگر احمد این کار را به تنها آغاز نماید ۶ ساعت بعد تر نظر به محمود آنرا خلاص کرده میتواند، هر کدام آنها به تنها خود این کار را در چقدر وقت تمام خواهند نمود؟ وقت‌کالاکالا زنده‌زنده

\[
\frac{1}{x} + \frac{1}{y} = \frac{1}{6} \quad \text{و} \quad \frac{1}{4} + \frac{1}{4} = \frac{1}{5}
\]

به‌طور کلی ۱۲ دقیقه ۵ دقیقه

تمرین ۳-۲:

1. \[p = 2L + 2w \] \[w = ? \]

محیط مستطیل

2. \[F = ma \]

برای \(a \) حل کنید - قانون دوم نیوتن

3. \[E = IR \]

\[I = ? \]

قانون اول (برق)

4. \[F = \frac{km_1 m_2}{d^2} \]

قانون قوا جاذبه بین دو جسم را برای \(m_2 \) حل کنید -

5. \[\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]

فورمول فشار و درجه حرارت

\[T_1 = ? \]

6. \[\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]

فورمول فشار و حرارت

\[V_2 = ? \]
در 7. $S = \frac{H}{m(v_1 - v_2)}$

در 8. $S = \frac{H}{m(v_1 - v_2)}$

در 9. $\frac{F}{m} = \frac{1}{m} + \frac{1}{P}$

تمرین:
برای x حل کنید:

11. $(x + a)(x - b) = x^2 + 5$

12. $(c + d)x + (c - d)x = c$

13. $10(a + x) = 8(a - x)$

14. $4(a + b + x) + 3(a + b - x) = 0$
سوالات عبارتی

15- 79.2٪ چند فیصد عدد 180 است؟
16- 6٪ کدام عدد 480 میشود؟
17- چند فیصد 28 عبارت از 1.68 است؟
18- 7٪ عدد 45.3 چند میشود؟

19- یک شخص از 11 تزئینی معاش خود مبلغ 1595$ گرفته است، معاش اصلی و معاش دومی این شخص چند؟
20- یک شخص از 12 تزئینی معاش خود مبلغ 2520$ اخذ نموده است، معاش اصلی و معاش جدید این شخص چند خواهد بود؟

21- سرمایه‌ به فائده 8٪ به ربح مرکب سالانه کمیته شده است، در این مقر، سال اگر سرمایه به 702$ صعود کند، اصل سرمایه چقدر می‌باشد؟
22- سرمایه‌ ای به 9٪ فائده به شکل ربح مرکب سالانه در بانک سرمایه‌گذاری شده است و در اخری یک سال در بانک مبلغ 50$ موجود است، سرمایه اولی چقدر بوده است؟

23- در یک مثلاً زاویه ABC پنج چند زاویه است و زاویه C، 2 کمتر از زاویه A می‌باشد، اندو که زاویه‌ها یا مثلث چند درجه خواهد بود؟ (نوت: Zاوایی داخلی یک مثلث 180 درجه است)
24- در یک مثلث ABC زاویه B در چند زاویه A می‌باشد، Zاویه C به اندو زاویه A می‌باشد. Zاویه B از زاویه A بیشتر است، Zاویه‌ای مثلث چند درجه خواهد بود؟

25- محیط یک مستطیل 322 متر است، طول آن از عرض 25 متر زیاد تر است، طول و عرض مستطیل را معلوم کنید.
طول و عرض این مستطیل را معلوم کنید.

نمرات یک شاگرد در سه امتحان بالترین: 87%, 64%, 78% میباشد.

نمره امتحان چهارم شاگرد چند خواهد بود؟ در صورتی که اوسط نمرات این شاگرد به 80% برسد؟

نمرات سه امتحان یک شاگرد 74%, 55% و 68% میباشد. نمره امتحان چهارم شاگرد چند خواهد که اوسط نمرات امتحان وی 70% شود؟

یک بکس پاز از یک پارچه حلبی 20 cm X 20cm (10 cm X 20 cm) طوری ساخته میشود که از هر کان یک بکس مربع خورد قطع میشود. و بعداً پارچه حلبی را جمع کرده بکس سریای بست می‌آید. اگر مساحت قاعده این بکس 60% مساحت پارچه حلبی باشد اضلاع مربع قطع شده چند خواهد بود؟

چوکات یک عکس از طرف بیرون به ابعاد 28 cm X 32 cm متر است. عرض حاشیه این چوکات منظم و یکسان است. اگر در چوکات مذکور عکسی به مساحت آن 192 سانتی متر مربع بوده نصب شده بتواند، عرض حاشیه چوکات را معلوم کنید.

بعد از 2% تزید، نفوس یک شهر به 826200 نفر بالغ شده است.

نفوس اولی این شهر چقدر بوده است؟

بعد از 3% تزید، در نفوس احصائی یک شهر 741,600 نفر ثبت گردیده.

نفوس اولی این شهر بعداً نفر بوده است؟

سفر یک کشتی به فاصله 50 کیلومتر موافق جریان آب در د ریا عین وقت را دری در میکردا که کشتی مذکور به فاصله 30 کیلومتر مخالف جریان آب سفر
میکند. سرعت آب دریا 3 کیلومتر در ساعت است. سرعت کشتی را در آب استاده معلوم کنید.

یک کشتی به فاصله 50 کیلومتر موافق جریان آب، و 30 کیلومتر مخالف جریان آب سفر میکند. هم زمان هر دو سفر را که تکمیل میکند مساوی است. سرعت کشتی در آب استاده 16 کیلومتر در ساعت است.

سرعت جریان آب دریا را معلوم کنید.

سرعت ریل A بسیار بیشتر از سرعت ریل B کمتر است. ریل A (mph) 12 و B کمتر است. ریل 290 مایل فاصله را در دو ساعت طی میکند. سرعت ریل را معلوم کنید.

سرعت یک راه ریلی مسافر بردار از سرعت ریل باربری (14mph) بیشتر است. ریل مسافر بردار 400 مایل فاصله را در همان وقت طی میکند. ریل باربری 330 مایل فاصله را در زمان یک ساعت و 30 دقیقه طی میکند. سرعت این راه ریل را معلوم کنید.

یک طیاره شهر A به سرعت 475mph ترک میگوید. 20 دقیقه بعد تر یک طیاره دیگر شهر B، که 350 مایل از شهر A فاصله دارد به سرعت 500mph ترک میگوید. چه وقت آنها با هم ملاقات می‌شوند؟ محل ملاقات هر دو طیاره از شهر A چقدر فاصله دارد؟

یک طیاره شخصی یک میکاپ هواپایی را ترک میگوید و به سمت شرق به سرعت 180kmh پرواز میکند. 2 ساعت بعد تر، یک طیاره جیت همان میکاپ را به سرعت 900 کیلومتر در ساعت ترک میگوید. به کدام فاصله از میکاپ، طیاره جیت، طیاره شخصی را فرا می‌گیرد؟

یک کار را در سه ساعت انجام می‌دهد، همان کار را در 5 ساعت انجام داده می‌تواند و همان کار را در 7 ساعت تکمیل کرده می‌تواند. اگر
هر سه ایشان یکجاپی کارکنند آن کار را در چقدر وقت تمام خواهدکرد؟

پایپ A یک حوض را در ۴ ساعت، پایپ B در ۱۰ ساعت و پایپ C در ۱۲ ساعت، به تمامی پر کرده می‌تواند. اگر سه پایپ یکجا جاری شوند حوض را در چند ساعت پر می‌شوند؟

اگر A با A یکجاپی کار کنند، همان کار را در (۲.۰۹) ساعت انجام داده می‌توانند. اگر B به تمامی اینکار را آغاز نماید، چقدر وقت آن را تمام خواهدکرد؟

دو هزار فابریک A هوا را ۲۱.۱۳ بار زیادتر نسبت به فابریک B کنیف می‌سازد. اگر هر در فابریک در یک وقت چالان، شوند، هوا را در ۱۶.۳ ساعت کنیف می‌سازند. اگر هر کدام آنها به تمامی فعالیت داشته باشد هوا را در چقدر وقت کنیف خواهد ساخت؟

۱۰۰۰$ به فایده % (۱۳.۷۵) سرمایه گذاری می‌شود. در اخیر یکسال در حساب بانکی چقدر پول خواهد بود اگر: ...

الف: سرمایه گذاری به "ب" مدرک سالانه باشد؟

ب: نیم ساله باشد؟

ج: یک یار باشد؟

د: روزانه باشد (۳۶۵ روز یکسال)؟

ژ: ساعت وار باشد؟

۴۴ - ۱۰۰۰$ به نرخ %۱۵.۵ به فایده گذشت. سرمایه نهایی بعد از ۵ سال چقدر خواهد بود؟ اگر "ب" مدرک باشد؟

الف: سالانه؟

ب: نصف سال؟

۱۲۹
ج: ۴ سال؟
د: روزانه (۶۵۰ روز یکسال)؟
ز: ساعت وارد به ۵ سال؟

پیک موتور ۱۴۴ میل سفر کرده است، اگر موتور مذکور ۴mph سریع تر
میرفت همین فاصله را در نیم ساعت کمتر طی میکرد. سرعت موتور چند
بوته است؟ (سرعت اوسط مسافری است به فاصله مجموعی تقسیم بر وقت
مجموعی)

پیک موتور ۲۸۰ میل فاصله را طی کرده است. اگر این موتور ۵ میل در
ساعت بیشتر سرعت میداشت این مسافه را در یکساعت کمتر از وقت قبیل
ennie میکرد. اصل سرعت موتور چند بوته است؟

پیک شاگرد برای مدت ۳ ساعت در سرک های شهر به سرعت ۵۵ میل در
ساعت درایوری کرده، بعداً ۱۰ میل فاصله را در شهر به سرعت
۳۵mph سوار کرده. سرعت اوسط این چند بوته است? (سرعت اوسط = فاصله
مجموعی تقسیم بر وقت مجموعی)

پیک سفر ۲۰۰km دور تر، در نظر است. حسب اول سفر که ۱۰۰km است
به سرعت ۶۰km/h و نصف دوم آن به سرعت ۴۰km/h میشود.

اوسط سرعت برای تمام سفر چند خواهد بود؟

پیک درایور نصف فاصله یک سفر را به سرعت ۴۰mph طی میکند. درایور
می‌توان با کدام سرعت، فاصله متباقی را طی کند که اوسط سرعت تمام سفر
۴۵mph باشد، و سفر در یک ساعت تکمیل شود؟

در کدام وقت بعد از ساعت (۴:۰۰) برای اولین دفعه، باید ۱/۴ ساعت کرده
ساعت (ساعت کم و دقتی کرد) با اهم عموی خواهند بود؟

۱۵ - کمربند ۵۰، وقت (۱۰:۱۰)
۵۲- سه عراده لازم A و B و C باهم پیکج‌کار می‌کنند که یک مقدار ریگ را در ساعت انتقال دهنده. هر گاه، هر کدام از لازم‌های خود به پایان کار کند، لازم A ریگ را در یک ساعت زیادتر در راستای B ریگ را در 6 ساعت زیادتر، و لازم C ریگ را در t ساعت زیادتر از وقت کار پیکج‌کاری انتقال داده می‌توانند. وقت t را معلوم کنید.

۵۳- یک طیاره از شهر A تا به شهر B در حالیکه باعث افزایش آن به سرعت 50mph می‌شود، به سرعت 750 پرواز می‌کند.

فاصله از شهر A تا شهر B 2574 میل است.

الف: آن نقطه را پیدا کنید که وقت بازگشت به شهر A همان‌قدر باشد که طیاره به شهر B میرفته.

ب: بعد از آنکه طیاره 1187 میل فاصله را طی می‌کند پیلوت متوجه می‌شود که باید طیاره عاجلاً به زمین فروند آید. آیا وقتی طیاره به شهر B وقت‌کنتر را دربر گرفته کافی باشد که شهر A باز کشته شود؟

۵۴- یک مامور با موثر خود به سرعت 45mph به سوی دفتر خود میرود و یکدیگه وقت‌کنتر به آنجا میرسد. اگر به سرعت 40mph حرکت کند به دفتر خودیک دوتسه‌های ناوقت، تور میرسد. دفتر مامور از خانه اش چقدر دور است؟

۵۵- K% از a = b = c و d بیشتر است. و به انسان از c از a = b = c در صورتی پیدا کنید که a = d باشد؟

۵۶- 1000$ به ربح مربک رعیه (4/1) به مقدار 11% به قرضه گذاشته شده است.

نرخ معادل آن‌ها پیدا کنید در صورتیکه این سرمایه به ربح سالانه سرمایه کدکاری شود؟
اعداد کمپلکس

اهداف:

با تکمیل کردن این بحث شما قادر خواهید شد که:

الف: اعداد موهوم (جذر مربع عدد منفی) را به حرف i تشريح نمایید.

ب: جمع، ضرب اعداد مختلط را اجراء کرده بتوانید، و نتیجه را به a+bi شکل نمایان سازید.

ج: دریابید که آیا یک عدد مختلط حل یک معادله است یا خیر؟

د: درک کردن این حقيقة که، در صورت باهم مساوی بودن اعداد مختلط، با یکدیگر حقيقة و حد موهوم باهم عین چیز باشند.

ذ: مزدوج یک عدد مختلط را پیدا کنید و اعداد مختلط را باهم تقسیم کرده بتوانید.

و: معکوس عدد مختلط را دریافت کرده و آنرا به شکل a+bi بیان کنید.

ز: معادله خطی را که دارای ضرب از اعداد مختلط باشد حل نموده بتوانید.

در جمله اعداد حقيقی، اعداد منفی جذر مربع ندارند. برای اینکه بتوانیم آسان گردد، بنام 'موهوم' (Imaginary عددی مشخص گردیده که ذریعه آن میتوان جذر مربع عدد منفی را پیدا کنیم. و معادلات لاینحل را قابل حل سازیم.

عدد موهوم را که بحرف (i) ارائه میشود چنین تعريف نموده اند:

عدد کمپلکس (عدد مختلط) آن عدد است که جز حقيقی و موهومی داشته باشد.
تعريف:

تعداد اعداد خیالی به طریقه حاصل ضرب عدد صفر و عدد اولی معنی دارد.

بعضی از عدد خواص ویژه دارد که به شکل

به شکل (i) تشخیص کنید:

1. \(\sqrt{-7} = \sqrt{-1 \times 7} = \sqrt{-1} \sqrt{7} = i \sqrt{7}, \sqrt{7} i \)
2. \(\sqrt{-16} = \sqrt{-1 \times 16} = \sqrt{-1} \sqrt{16} = i \times 4 = 4i \)
3. \(-\sqrt{-13} = -\sqrt{-1 \times 13} = -\sqrt{-1} \sqrt{13} = -i \sqrt{13}, -\sqrt{13} i \)
4. \(-\sqrt{-64} = -\sqrt{-1 \times 64} = -\sqrt{-1} \sqrt{64} = -i \times 8 \)
5. \(\sqrt{-48} = \sqrt{-1 \times 48} = \sqrt{-1} \sqrt{48} = i \sqrt{48} = i \sqrt{48} \sqrt{3} \)

با توجه به حالیت داشت که بالایی عدد خیالی تمام قوانینی که در اعداد خیالی بکار می‌رود، قابل تطبیق می‌باشند.

قابل توجه:

قبل از آنکه عدد خیالی ساده شود باید به شکل (i) در آروده شود.

مثال 6: ساده سازید.
\[\sqrt{-3} \sqrt{-7} = ? \]
\[\sqrt{-3} \sqrt{-7} = i \sqrt{3} \times i \sqrt{7} \]
\[2 \sqrt[2]{3 \cdot 7} = -1 \times \sqrt{21} \]
\[= -\sqrt{21} \]

\[\sqrt{-20} / \sqrt{-5} = ? \]
\[\frac{-\sqrt{20}}{\sqrt{-5}} = \frac{-\sqrt{20}}{i \sqrt{5}} \times \frac{i}{i} = \frac{-i \sqrt{20}}{i^2 \sqrt{5}} = \frac{-i \sqrt{20}}{-1} \times \frac{\sqrt{20}}{5} = 2i \]

Exercise: Write (i) in Arabic.

1. \(\sqrt{-6}\)
2. \(-\sqrt{-10}\)
3. \(\sqrt{-4}\)
4. \(-\sqrt{-25}\)
5. \(\sqrt{-5} \sqrt{-2}\)
6. \(\sqrt[6]{-22}\)
7. \(\frac{\sqrt{-21}}{\sqrt{3}}\)
8. \(\sqrt{-16} + \sqrt{-9}\)
9. \(\sqrt{-25} - \sqrt{-4}\)
10. \(\sqrt{-17} + \sqrt{-9}\)
مثال 8:

\[
\sqrt{-9} + \sqrt{-25} = \sqrt{9} + i\sqrt{25} = 3i + 5i = (3 + 5)i = 8i
\]

توان (i):

2
\[
i = (-1)^{\frac{2}{2}} = (-1)^1 = 1
\]

3
\[
i = i \cdot X \cdot i = (-1)i = -i
\]

4
\[
i = (i)^2 = (-1)^2 = 1
\]

5
\[
i = i \cdot X \cdot i = (i)^2 \cdot X = (-1)^2 \cdot X = i
\]

6
\[
i = (i)^3 = (-1)^3 = -1
\]

از تحلیل نتایج می‌گیریم که توان (i) سایل: (1, i, -1, -i) را طی می‌کند.

مثال: ساده‌سازی

9. \[
i = i \cdot X \cdot i = (-1) \cdot X = 1 \cdot i = i
\]

10. \[
i = (i)^2 = (-1)^2 = 1
\]

11. \[
i = (i)^3 = (-1)^3 = -1
\]
تموینی: ساده نیاند.

ب: اعداد مختلط:

معادله، $0 = 1 + \frac{1}{x}$ به اساس اعداد حقیقی حل ندارد. اما از طریق اعداد موهوم (نری) معادله قوی حل دارد.

اما، بعضی معادلات ظاهراً خیلی ساده به نظر میرسند، ولی: به هر در طریق حل ندارد.

مانند: $0 = 2 + \frac{1}{x}$

ول اگر جمع عدد حقیقی عدد موهوم را قبول کرده بتوانیم، در آنصورت حل آن امکان پذیر می‌گردد.

برای آنکه اکثر معادلات را حل کرده بتوانیم، سیستم اعداد کمپلکس ایجاد شده است که حل معادلات را امکان پذیر می‌سازد.

(سیستم اعداد کمپلکس):

اعداد کمپلکس آن اند که جز موهوم و جز حقیقی داشته باشند. با این اعداد حقیقی را جدا و اعداد موهوم را جدا جمع نماییم. اعداد ذیل بنام اعداد کمپلکس یاد می‌شوند.

$3 + 2i, 3 - 2i, 1 - i, 1 + i, 7, -5 + 3i, -5 - 3i, 7 + 8i, 7 - 8i$

تعریف:

عدد کمپلکس عددی است که شکل $a + bi$ داشته، a جز حقیقی و b جز موهوم است. تمام قواعد الجبری که بالای اعداد حقیقی تطبیق می‌شوند بالای اعداد مختلط نیز قابل تطبیق اند. به عبارتی دیگر (Field properties)، بالای اعداد کمپلکس نیز قابل تطبیق می‌باشند.

• توان قوانین اعداد حقیقی بالای آن قابل تطیف است.
مکاسبه اعداد کملکس:
چون در سیستم اعداد کملکس، (Field property) قابل تطیق می‌باشد، لذا در محاسبه این سیستم قواعد اعداد حقیقی عیناً در نظر گرفته می‌شوند، البته با توجه به اینکه
\[\frac{2}{i} = 1 - i \]

مثال 12: ساده‌سازی
\[\frac{2}{i} = -1 \]
\[(8 + 2i) + (3 + 2i) \]
\[(8 + 6i) + (3 + 2i) = 8 + 3 + 6i + 2i = 11 + 8i \]

مثال 13: ساده‌سازی
\[(1 + 2i)(1 + 3i) \]
\[(1 + 2i)(1 + 3i) = 1 + 6i + 2i + 3i = -6 + 2i + 3i = -5 + 5i \]

مثال 14: ساده‌سازی
\[(3 + 2i) - (5 - 2i) \]
\[(3 - 2i) - (5 - 2i) = 3 + 2i - 5 + 2i = -2 + 4i \]

ساده‌سازی:

<table>
<thead>
<tr>
<th>تمرینات</th>
<th>متغیرهای</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>(8 - i) + (4 + 2i)</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>(9 + 2i) - (4 + 3i)</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>(2 + 4i)(3 + i)</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>(4 + 5i) + (4 - 5i)</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>2i(4 + 3i)</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>(5 + 6i) - (5 + 3i)</td>
<td></td>
</tr>
</tbody>
</table>
مثال 16: فيكتور نايبذ.

\[\frac{2}{x+y} = \frac{x+yi}{(x-yi)} \]

تمرين: فيكتور نايبذ.

20. \[\frac{2}{x+4} \]

21. \[\frac{9}{y^2} \]

د: حل معادلات:

اًز طريق سيستم اعداد كمبلكس، أكثر معادلات كه بطريقة ديكر حل نيشوند، حل دارند. در هر معادله که \(p(x) = 0 \) باشد و \(p'(x) \) باشد و (x) چنین حل می‌شود:

مثال 17:

در معادله \(0 = 2 + 2x - \frac{x^2}{2} \) در پایت کنید که حل این معادله، (1+i) است؟

\[\frac{2}{x - 2x + 2} = \frac{0}{(1+i)^2 - 2(1+i) + 2} \]

\[\frac{8}{1+2i+1 - 2 - 2i + 2} \]

حل است (1+i) \(x = (1+i) \)

تمرينات:

معلوم كنيد که (1-i) حل معادله است. معادله معادلة (a+bi = c+di) صحت است، مشروط بر آنکه جز حقیقی و جز معوهم
مثال 18:

در معادله $2x + 1 + 2i$ قیمت x و y را معلوم کنید؟

حل: جز حقیقی هر دو طرف مساوات را مساوات قرار می‌دهیم. در نتیجه در هر دو طرف مساوات جز های میوه می‌یابیم مساوات می‌شوند.

$3x + yi = 5x + 1 + 2i$.

$3x = 5x + 1$

(جز حقیقی)

1

$\frac{y}{2} = 2i$

(جز میوه)

2

$y = 2$

جواب

تمرین: در معادله:

23. $3x + 1 + (y + 2) i = 2x + 2yi$

$x = ? , y = ?$

جواب

و: مزدوج ها و عملیات تقسیم:

مزدوج یک عدد کاملاً چنین تعريف می‌شود:

$a - bi$ تعريف مزدوج عدد مختلط $a + bi$، عدد است از $a + bi$، و مزدوج

عبارت است از $a + bi$.
به همین منوال:
مزدوج 4 + 3 عبارت است از 4i - 3.
مزدوج 7i - 5 عبارت است از 7 + 5i.
مزدوج 6 عبارت است از 6i.

تمرین: مزدوج هر کدام را دریافت کنید:

24. $7 + 2i$
25. $6 - 4i$
26. $-5i$
27. $3i$
28. -3
29. 8

عملیه تقسیم:
در تقسیم اعداد کمپلکس از مزدوج ها زیاد تر استفاده می‌شود.
مثال: 19

$4 + 5i \div 1 + 4i = ?$

\[
\frac{4 + 5i}{1 + 4i} \times \frac{1 - 4i}{1 - 4i} = \frac{(4 + 5i)(1 - 4i)}{1 - 4i} = \frac{16 - 20i}{1 - 16i} = \frac{24 - 11i}{17}
\]

\[
\frac{24 - 11i}{17} = \frac{24}{17} - \frac{11}{17}i
\]

تمرین: تقسیم نبانید:

30. $\frac{1 + 3i}{3 + 2i}$
31. $\frac{2 + i}{3 - 2i}$
ز : معکوس عدد کمپلکس:
معکوس یک عدد مختلط، یک عدد همان عدد است.
مثال ۲۰ : معکوس $3-2i$ را دریافت کرده و به شکل $a+bi$ تحریر کنید.
معکوس $3-2i$ نیز در آورده می‌توانیم:
عبارت است از : $(3-2i)/1$ ، به شکل $a+bi$ نیز در آورده می‌توانیم:

تمرین: ...
(32)
معکوس این معادله $(4i+3)$ ، به شکل $a+bi$ تحریر کنید.

\[
\begin{align*}
\frac{1}{2-3i} & \times \frac{2+3i}{2+3i} = \frac{2+3i}{2^2 - 3i^2} = \frac{2+3i}{4+9} \\
2 & \div 2 - 3i + 3i = \frac{2}{13} + \frac{3}{13}i
\end{align*}
\]

ج : معادلات خط مستقیم:
در حل معادلات خط مستقیم با اعداد کمپلکس، تمام قواعد الجبری که در معادلات خطی خیلی مختلط قابل تطبیق اند، مراحل می‌گردد.
مثال ۲۱:

\[
\begin{align*}
3ix + 4 - 5i & = (1 + i)x + 2i \\
3ix - (1 + i)x & = 2i - (4 - 5i) \\
(-1 + 2i)x & = -4 + 7i
\end{align*}
\]
\[
\begin{align*}
x &= \frac{-4 + 7i}{-1 + 2i} \\
x &= \frac{-4 + 7i}{-1 + 2i} \times \frac{-1 - 2i}{-1 - 2i} \\
18 + i &= \frac{18}{5} + \frac{1}{5}i
\end{align*}
\]

تمرین 6-1 را به جنس (i) تبدیل کنید:

\[
3 - 4i + 2ix = 3i - (1 - i)x, \quad x = ?
\]

تمرینات 4-2

تمرین 6-1 را به جنس (i) تبدیل کنید:

1. \(\sqrt{-15}\) \hspace{1cm} 2. \(\sqrt{-17}\)
3. \(\sqrt{-81}\) \hspace{1cm} 4. \(\sqrt{-25}\)
5. \(-\sqrt{-12}\) \hspace{1cm} 6. \(-\sqrt{-20}\)

تمرین 20-7 را ساده سازید و جوابات را از جنس (i) بگذارید:

7. \(\sqrt{-16} + \sqrt{-25}\) \hspace{1cm} 8. \(\sqrt{-36} - \sqrt{-4}\)
9. \(\sqrt{-7} - \sqrt{10}\) \hspace{1cm} 10. \(\sqrt{-5} + \sqrt{-7}\)
11. \(\sqrt{-5} \sqrt{-11} \)
12. \(\sqrt{-7} \sqrt{-4} \)
13. \(-\sqrt{-9} \sqrt{-7} \)
14. \(-\sqrt{-9} \sqrt{-7} \)
15. \(\frac{\sqrt{5}}{\sqrt{-2}} \)
16. \(\frac{\sqrt{7}}{\sqrt{-5}} \)
17. \(\frac{\sqrt{-9}}{-\sqrt{4}} \)
18. \(\frac{\sqrt{-25}}{\sqrt{-16}} \)
19. \(\frac{\sqrt{-36}}{\sqrt{-9}} \)
20. \(\frac{\sqrt{-25}}{\sqrt{-16}} \)

تمرین 28 - 21 را ساده سازید:

21. \((2 + 3i) + (4 + 2i) \)
22. \((5 - 2i) + (6 + 3i) \)
23. \((4 + 3i) + (4 - 3i) \)
24. \((2 + 3i) + (-2 - 3i) \)
25. \((8 + 11i) - (6 + 7i) \)
26. \((9 - 5i) - (4 + 2i) \)
27. \(2i - (4 + 3i) \)
28. \(3i - (5 + 2i) \)
29. \((1 + 2i)(1 + 3i) \)
30. \((1 + 4i)(1 - 3i) \)
31. \((1 + 2i)(1 - 3i) \)
32. \((2 + 3i)(2 - 3i) \)
33. \(3i(4 + 2i) \)
34. \(5i(3 - 4i) \)
35. \(\frac{2}{\sqrt{13}} \)
36. \(\frac{3 - 2i}{2\sqrt{2}} \)
37. \(i \)
38. \(i \)
39. \(4x^2 + 25y^2\)

40. \(16a^2 + 49b^2\)

آیا حل \(0 = 5 + 2x + 1 + 2i\) است یا خیر؟

آیا حل \(0 = 5 + 2x - 2i\) است یا خیر؟

از تمرین 43 الی 44 برای \(x\) و \(y\) حل کنید:

43. \(4x + 7i = -6 + yi\)

44. \(-4 + (x + y)i = 2x - 5y + 5i\)

از 45 الی 60 بسته \(a + bi\) بدلیل کنید:

<table>
<thead>
<tr>
<th>45.</th>
<th>(\frac{4 + 3i}{1 - i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.</td>
<td>(\frac{2 - 3i}{5 - 4i})</td>
</tr>
<tr>
<td>47.</td>
<td>(\frac{\sqrt{2} + i}{\sqrt{2} - i})</td>
</tr>
<tr>
<td>48.</td>
<td>(\frac{\sqrt{3} + i}{\sqrt{3} - i})</td>
</tr>
<tr>
<td>49.</td>
<td>(\frac{3 + 2i}{i})</td>
</tr>
<tr>
<td>50.</td>
<td>(\frac{2 + 3i}{i})</td>
</tr>
<tr>
<td>51.</td>
<td>(\frac{i}{2 + i})</td>
</tr>
<tr>
<td>52.</td>
<td>(\frac{3}{5 - 11i})</td>
</tr>
</tbody>
</table>
53. \[\frac{1 - i}{(1 + i)^2} \]

54. \[\frac{1 + i}{(1 - i)^2} \]

55. \[\frac{3 - 4i}{(2 + i)(3 - 2i)} \]

56. \[\frac{(4 - i)(5 + i)}{(6 - 5i)(7 - 2i)} \]

57. \[\frac{1 + i}{1 - i} \times \frac{2 - i}{1 - i} \]

58. \[\frac{1 - i}{1 + i} \times \frac{2 + i}{1 + i} \]

59. \[\frac{3 + 2i}{1 - i} + \frac{6 + 2i}{1 - i} \]

60. \[\frac{4 - 2i}{1 + i} + \frac{2 - 5i}{1 + i} \]

از 68-61 ممکس آتارا درایافت کرده و به شکل \(a + bi \) در آورید.

61. \(4 + 3i \)

62. \(4 - 3i \)

63. \(5 - 2i \)

64. \(2 + 5i \)

65. \(i \)

66. \(-i \)

67. \(-4i \)

68. \(5i \)

حل کنید:

69. \((3 + i)x + i = 5i \)

70. \((2 + i)x - i = 5 + i \)

71. \(2ix + 5 - 4i = (2 + 3i)x - 2i \)

72. \(5ix + 3 + 2i = (3 - 2i)x + 3i \)

73. \((1 + 2i)x + 3 - 2i = 4 - 5i + 3ix \)
74.

(1-2ı)x + 2 - 3ı = 5 - 4ı + 2x

75.

(5+ı)x + 1 - 3ı = (2 - 3ı)x + 2 - ı

76.

(5 - ı)x + 2 - 3ı = (3 - 2ı)x + 3 - ı

نشان بدهید که این قاعده عمومی جذر که در مورد اعداد حقيقی تطبيق
میشود، در مورد اعداد کمپلکس، صدق نمیکند.

77.

\[\sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \]

نشان بدهید که این قاعده عمومی جذر که در اعداد حقيقی صحت است،
در مورد اعداد مختلط صدق نمیکند.

78.

\[\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \]

جهت ارایه اعداد کمپلکس یک حرف را بکار برده می‌توانیم. بطور مثال، را
به حرف Z نشان می‌دهیم و مزدوج این عدد را به \(\bar{Z} \) بیان می‌کنیم. به
عبارت دیگر، مزدوج \(a + bi \) عبارت است از \(a - bi \). در نظر گرفته
که از مشخصات مزدوج های دیل را ثابت کنید:

\[a - bi = a + bi \]

برای هر عدد مختلط Z

79.

برای هر عدد حقيقی است Z X \(\bar{Z} \), Z \(\bar{Z} \), Z+\(\bar{Z} \), ز + \(\bar{Z} \), Z و W

80.

برای هر عدد کمپلکس Z

81.

برای هر عدد مختلط Z و W

82.

برای هر عدد کمپلکس Z

83.

برای هر عدد مختلط Z

باشد.

186
اگر z یک عدد حقیقی باشد، پس $\overline{z} = z$ است.

85. با استفاده از ثبوت های فقره‌های 84-79، یک پولی‌نوم را به ارتباط \overline{z} در یافتن کنید که مزدوج $5 - 3z + 4\bar{z} = 3\bar{z}$ باشد.

86. حرف نایید: $7\overline{z} + z = 6\overline{z}$

87. حرف نایید: $5z - 4\overline{z} = 7 + 8i$

88. اگر $Z = a + bi$ باشد، $Z = a + bi$

حل نایید:

90. $\overline{Z} = -2i$, $(Z = a + bi)$

91. $\frac{\overline{Z}}{2}$

92. $Z = a + bi$, $\frac{1}{Z} = ?$

93. $Z = a + bi$, $W = c + di$, $\frac{w}{z} = ?$
معادله درجه دوم

اهداف:

با تکمیل کردن این بخش شما قادر خواهید شد که:

1. معادلات درجه دوم را حل نمایید.

الف: با گرفتن جذر مربع از هر دو طرف.

ب: با طریقه تکیه مربع.

چ: با استفاده از فرمول عمومی معادله درجه دوم.

2. تشکیل معادلات درجه دوم که حل های مشخص داشته میباشند.

حل معادله درجه دوم:

معادلات پولینومیال درجه دوم به صورت

که

اکنون معادله درج به شکل اساسی (Standard form)

معادله درجه دوم را بنام معادله درجه دوم (Quadratic)

میگردد. در صورتی که درجه آن دو باشد، شکل اساسی

دوم عبارت است از :

\[ax^2 + bx + c = 0 \]

که

اعداد حقيقی میباشند.

ضریب های \(a\) و \(b\) و \(c\) میتوانند صفر باشند اما ضریب \(a\) هیچ وقت صفر نمیتواند.

زیرا اگر \(a\) مساوی صفر شود، در آن صورت معادله درجه دوم نخواهند بود.

معادلات درجه دوم را میتوان با عملیه های نیکتویرگن حل کرد، اما طریقه های

دیگر نیز موجود است که در این بحث نشان داده میشود.

حل معادله:

\[ax^2 = bx + c = 0 \]

نخست می‌توانیم با حساب نتایج صفر باشند (ضریب \(b\) صفر باشد).
آن موجود نباشد و آن عبارت است از $0 = ax^2 + c$. این چهار معادله با گرافن جذب مربع از هر دو طرف مساوات حل می‌گردد.

برای فهمیدن این موضوع، مراحل ذیل را طی می‌نماییم:

\[
\begin{align*}
2ax + c &= 0 \\
2ax &= -c \\
ax &= -\frac{c}{2} \\
x &= -\frac{c}{2a}
\end{align*}
\]

در اینجا ملاحظه می‌شود که x, به یک طرف معادله و اعداد ثابت طرف دیگر معادله قرار دارد، جهت ساده ساختن افداه، ثابت را با حرف K تعیین می‌نماییم و به

\[
\begin{align*}
2x &= k \\
2x - k &= 0 \\
2x - (\sqrt{k})^2 &= 0 \\
(x + \sqrt{k})(x - \sqrt{k}) &= 0 \\
x - \sqrt{k} &= 0 \\
x + \sqrt{k} &= 0
\end{align*}
\]

\[
x_1 = -\sqrt{k}, \quad x_2 = \sqrt{k}
\]

از حل معادله فوق چهار نتیجه می‌گیریم که حل معادله در جذر دارد یا دو جواب:

\[
-\sqrt{k}, \sqrt{k}
\]
مثال اول:

\[5x^2 = 15 \]
\[5x = 15 \]
\[x = 3 \]

\[x = \sqrt{3}, \quad x = -\sqrt{3} \]

توضیح: برای حل کنید:

1. \[x = 3 \]
2. \[5x^2 = 0 \]
3. \[3x^2 = 11 \]
4. \[mx^2 = n \]

بعضی از این تابعها، جواب مطلوب را نمی‌توانیم به شکل اعداد حقیقی بدست بیاورد. اما حل آن از طریق اعداد کامپلکس امکان‌پذیر می‌باشد.

مثال دوم:

\[4x^2 + 9 = 0 \]
\[4x + 9 = 0 \]

\[\frac{2}{x} = -\frac{9}{4} \]

\[x = \pm \sqrt{-\frac{9}{4}} \]

\[x = \frac{3}{2i}, \quad x = -\frac{3}{2i} \]
تمرین: حل کنید:

\[2x^2 + 1 = 0 \]

\[x = k \]

به صورت عموم، معادله \(x = k \) دارای ۲ حل حقيقی می‌باشد.
آن هم در صورتی که \(k > 0 \) باشد. اگر \(k = 0 \) باشد، معادله فقط یک حل دارد که عبارت است از صفر.
و اگر \(k < 0 \) باشد، معادله دو حل غیر حقیقی دارد.

مثال سوم:

\[(x + 5)^2 = 3 \]

\[|x + 5| = \sqrt{3} \]

\[x = -5 \pm \sqrt{3} \]

\[\{ -5 - \sqrt{3}, -5 + \sqrt{3} \} \]

حل

تمرین حل کنید:

6. \((x + 4)^2 = 7 \)

7. \((x - 5)^2 = 3 \)

8. \((x + 5)^2 = 4 \)

حل تکمیل مربع:
اگر معادله به شکل \((x + h)^2 = k \) نباشد، این معادله را بطور \(h \) تکمیل مربع.
میتوانیم به این شکل تبدیل نماییم:
مثال چاره:
معادله $0 = 12 - 6x - x^2$ را بطوریه تکمیل مربع حل نماید. ما نخست $\frac{x^2}{2}$ و
حد های x را در نظر می‌پیماییم:

یک تریا نمایی مربع می‌تواند می‌شوند. اول‌اً توجه کنید که $9 + 6x - x^2$ یک مربع مکمل است و می‌توانند این شکل $9 + (3-x)^2$ را اختیار نمایند. اگر ما عدد 9 را به $x^2 - 6x$ جمع و تفریق نماییم، در آنصورت معادله تکمیل مربع بدست می‌آید. پس به

$0 = (x^2 - 6x + 9) - 9$ عبارت از صفر است علوه مینامیم.

$$
\frac{x^2}{2} - 6x + 9 - 9 = 0
$$

$$(x - 3)^2 = 0$$

$$(x - 3)^2 = 21$$

$$x = 3 \pm \sqrt{21}$$

$$(x - 3)^2 = \left\{ \begin{array}{l}
3 + \sqrt{21} \\
3 - \sqrt{21}
\end{array} \right\}$$

$$x_1, x_2$$

در دیل طریق عمل عملیات این می‌باشد که بنام تکمیل مربع یاد می‌شود.

حل معادله $0 = ax^2 + bx + c$ به طوریه تکمیل مربع:
1- اگر $a \neq 0$، در دو طرف معادله را به a ضرب می‌کنیم تا معادله شکل $x^2 + bx + c = 0$ را اختیار کنیم.
2- برای آنکه تکمیل مربع باید $\frac{x^2}{2}$ تطابق شود، ضریب x^2 را به 2 تقسیم نموده، مربع می‌شوم و نتیجه را با معادله اولی جمع و تفریق مینامیم.

3- جذر مربع را می‌گیریم و برای x حل می‌نامیم.
مثال 5: معادلة 0 = 5 - 3x + \(\frac{2}{x} \) را بطريقة تكمل مربع حل كنيد:

1. لذا معادله را به (1) تقسيم مينمانم: يا.. 0 = 5 - 3x + \(\frac{2}{x} \)

2. ضرب b را كه عبارت از (3) است، به 2 تقسيم نموده مربع مساوی معادله جمع و تقسيم میکنیم.

\[
\frac{2}{x} + 3x + \frac{9}{4} - \frac{9}{4} - 5 = 0
\]

\[
(x + \frac{3}{2})(x + \frac{3}{2}) = 0
\]

3. جذر مربع میکنیم:

\[
x + \frac{3}{2} = \pm \sqrt{\frac{29}{4}} = \pm \frac{\sqrt{29}}{2}
\]

\[
x = -\frac{3}{2} \pm \frac{\sqrt{29}}{2}
\]

\[
x = \frac{-3 \pm \sqrt{29}}{2}
\]

\[
x = \frac{-3 + \sqrt{29}}{2}
\]

\[
x = \frac{-3 - \sqrt{29}}{2}
\]
در اینجا، خالیگاه‌ها را با عدد مکمل نسبیت تا تکمیل مربع بدست بپایید.

9. \[\frac{2}{x + 4x + _} = (_) \]

10. \[\frac{2}{x - 6x + _} = (_) \]

11. \[\frac{2}{x + 5x + _} = (_) \]

12. \[\frac{2}{x - 7x + _} = (_) \]

13. \[\frac{2}{x + \frac{3}{4} x + _} = (_) \]

14. \[\frac{2}{x - x + _} = (_) \]

این تمرین‌های را با روش تکمیل مربع حل نمایید:

15. \[\frac{2}{x + 4x - 3} = 0 \]

16. \[\frac{2}{x - 6x + 8} = 0 \]

17. \[\frac{2}{x - 5x + 6} = 0 \]

مثال 6:

معادله \[0 = 1 - 3x - 2^{2} \]

را با روش تکمیل مربع حل کنید.

چون \[2 = a \] است، لذا، \[\frac{a}{(1/2)^{1}} \] ما هر دو طرف معادله را به \[\frac{1}{a} \text{ به (1/2)} \]
که ضرب \(x^2 \) است، ضرب مینیمیم:

\[
2x^2 - 3x - 1 = 0
\]

\[
a \neq 1 \quad \frac{1}{2} = \frac{1}{a} \quad (1)
\]

\[
2x^2 - 3x - 1 = 0
\]

\[
\begin{align*}
\frac{3}{2} x - \frac{1}{2} = 0 \quad \text{ضرب مینیمیم به 2/3 می‌رسد} & \quad \text{بی‌درستی و مربع مینیمیم} \\
\left(\frac{1}{2} \right) X \left(\frac{9}{16} \right) & \Rightarrow \quad (2)
\end{align*}
\]

\[
\frac{2}{x} - \frac{3}{2} x + \frac{9}{16} - \frac{5}{16} - \frac{1}{2} = 0
\]

\[
(x - \frac{3}{4}) - \frac{17}{16} = 0
\]

\[
\{x - \frac{3}{4}\} = \frac{17}{16}
\]
این تمرین‌ها را با طریقه تکیه مربع حل کنید:

18. \[2x^2 + 2x - 3 = 0 \]

19. \[4x^2 + 3x - 1 = 0 \]

فورمول حل معادله درجه دوم:

ما طریقه تکیه مربع را با نظریه مطالعه کردیم. یکی این وسیله مهم خوب تر ذهن نشین شود و دیگر اینکه به این طریقه میتوان فورمول عمومی حل معادله درجه دوم را بدست آورد. این فورمول بنام فورمول عمومی حل معادله درجه دوم (Quadratic formula) یاد می‌شود.

در استفاده از این فورمول، لازم است که نخست معادله را به شکل عمومی \[ax^2 + bx + c = 0 \] درآوردند. بعداً قیمت‌های ثابت و ضرب های \(a\), \(b\) و \(c\) را تشخیص دهیم.

\[ax^2 + bx + c = 0 \]

\[4a^2x^2 + 4abx + 4ac = 0 \]

\[4a^2x^2 + 4abx + b^2 - 4ac = 0 \]

\[4a^2x^2 + 4abx + b = b - 4ac \]
تقضیه سوم:
شکل عمومی معادله: \(ax^2 + bx + c = 0 \) بوده که حل آن \(ax^2 + bx + c = 0 \)

\[
\begin{align*}
2ax + b &= \sqrt{b^2 - 4ac} \\
2ax + b &= \pm \sqrt{b^2 - 4ac}.
\end{align*}
\]

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

است

مثال 7:
معادله \(ax^2 + bx + c = 0 \) را حل کنید.

نخست معادله را به شکل عمومی در آورد: قیمت های \(a, b, c \) را تشخیص می‌دهیم.

بعداً از فرمول عمومی حل معادله درجه دوم استفاده می‌شود.

\[
\begin{align*}
2x^2 + 2x + c &= 0 \\
3x^2 + 2x &= 7 \\
3x^2 + 2x - 7 &= 0 , \quad \ldots \\
\end{align*}
\]

\[
a = 3 , \quad b = 2 , \quad c = 7 \quad \ldots
\]

197
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4 \times 3 \times (-7)}}{2 \times 3}
\]

\[
x = \frac{-2 \pm \sqrt{4 + 84}}{6}
\]

\[
x = \frac{-2 \pm \sqrt{88}}{6} = \frac{-2 \pm \sqrt{4 \times 22}}{6}
\]

\[
x = \frac{-2 \pm 2\sqrt{22}}{6} = \frac{2 (-1 \pm \sqrt{22})}{2 \times 3}
\]

\[
x = \frac{-1 \pm \sqrt{22}}{3}
\]

\[
x_1 = \frac{-1 + \sqrt{22}}{3} \approx \frac{-1 + 4.69}{3} \approx \frac{3.49}{3} \approx 1.2
\]

\[
x_2 = \frac{-1 - \sqrt{22}}{2} \approx \frac{-1 - 4.69}{3} \approx \frac{-5.69}{3} \approx -1.9
\]

مثال 8

معادلة 0 = 2x^2 + x + 1

را حل نمايد:

\[
2x^2 + x + 1 = 0
\]

\[
a = 1, b = 1, c = 1
\]
حل معادله درجه دوم عموماً از طریق فرمول عمومی صورت می‌گیرد. اما حل آن معادلات که جواب‌های ناگنی ندارند از طریق فرمول فیکتور رکورد نامی‌کنن است، لذا یک قاعدة عمومی جهت حل معادلات درجه دوم در دایر اراکه می‌گردد:

1- از طریق فیکتورینگ

2- اکر فیکتورینگ عمل ناشد از فرمول عمومی استفاده نمایید.

تمویزی:

معادلات را حل کنید.

20. \(\frac{2}{x} + 7x = 4 \)

21. \(5x - 8x = 3 \)

22. \(\frac{2}{x} - x + 2 = 0 \)

(ب) دلتنها (Δ):

از فرمول عمومی ما میدانیم که، جذر های \(x_1 \) و \(x_2 \) که حل معادله اند قرار دیل نشان داده می‌شوند:

199
در فرمول فوق، افاده $- \frac{b^2 - 4ac}{2a}$ را بنام دلتا (Δ) یاد می‌کنند که حالت حل معادله را تعیین می‌کند. چنان‌چه اگر قیمت (Δ) صفر باشد، در آنصورت نتیجه علامت مثبت و منفی از میان میرود. هر گاه (Δ) مثبت باشد، در آنصورت معادله دو جذر (دو حل) حقیقی دارد و اگر (Δ) منفی باشد در آنصورت هر دو جذر معادله اعداد موهوم می‌باشند که مزدوج یکدیگر نامیده می‌شوند.

قضیه چهارم:

- اگر $b^2 - 4ac = 0$ باشد، معادله $ax^2 + bx + c = 0$ حل دارد (یا دو حل مساوی).
- اگر $b^2 - 4ac > 0$ باشد، معادله $ax^2 + bx + c$ دو جذر مختلف حقیقی دارد.
- اگر $b^2 - 4ac < 0$ باشد، معادله $ax^2 + bx + c$ دو جذر مختلف غیر حقیقی دارد.

دارد که بنام اعداد (موهوم مزدوج) یاد می‌شوند.

مثال 9:

حال حاصل معادله $0 = 4 + 12x - 9x^2$ را تعیین کنید

$a = 9, b = -12, c = 4$ $9x^2 - 12x + 4 = 0$

$2b - 4ac = (-12)^2 - 4(9)(4) = 144 - 144 = 0$

لذا معادله مذکور یک جذر حقیقی دارد.

مثال 10:

حال حاصل معادله $0 = 8 + 5x + 8x^2$ را تعیین کنید.

$a = 1, b = 5, c = 8$

$2b - 4ac = 25 - 32 = -7$
مثال 11:
حالات حل معادلة 0 = 6 + \(x^2 + 4x + 5 \) عين كنيد.

\[a = 1, \ b = 5, \ c = 6 \]

\[\begin{align*}
 b^2 - 4ac &= 25 - 24 = 1 \\
 \text{جرون} (5) &= \text{مثبت، لذا معادلة در جذر حقيقي دارد.}
\end{align*} \]

تمرين: بدون حل، حالات اين معادلات را تشريح نمايد:

23. \(\frac{2}{x} + 5x - 3 = 0 \)

24. \(9x^2 - 6x + 1 = 0 \)

25. \(3x^2 - 2x + 1 = 0 \)

چ: طرز نوشتن معادله از طريق جذر های آن:
با درنظر داشتن اینکه حاصل ضرب در فکتور صفر شود، ما میدانیم که از
فکتورینگ \(0 = (3 + x)(2 - x) \) حل معادله لمکور عبارت است از: 2, 3, -پس اگر ما
حل معادله (جذر های معادله) را داشته باشیم میتوانیم معادله را بدست بیاوریم.

مثال 12:
معادله را ببنویسید که حل ها جذر های آن \(2i, -2i \) است.

\[x_1 = 2i, \quad x_2 = -2i \]

\[x - 2i = 0, \quad x + 2i = 0 \]

\[(x - 2i)(x + 2i) = 0 \]

\[\frac{2}{x + 2ix} - 2ix - \frac{2}{2i} = x - \frac{2}{2i} = 0 \]

\[\frac{2}{x} + 4 = 0 \]

\[\text{جرب} \ldots \]

201
مثال ۱۲:
معادله را در یک پاییده که جذر های آن ۳، ۲/۵ باشند.

\[x = 3 \]
\[x - 3 = 0 \]

\[x = -\frac{2}{5} \]
\[x + \frac{2}{5} = 0 \]

\[\frac{2}{5} (x - 3)(x + \frac{2}{5}) = 0 \]

\[\frac{2}{x} + \frac{2}{5} x - 3x - 2 \times \frac{3}{5} x - \frac{6}{5} = 0 \]

\[= 2 \times x - \frac{13}{5} x - \frac{6}{5} = 0 \]

\[5x - 13x - 6 = 0 \]

\[5x - 6 = 0 \]

\[x = \sqrt{3} \]
\[(x - \sqrt{3}) = 0 \]

\[x = -\frac{2}{\sqrt{3}} \]
\[(x + \frac{2}{\sqrt{3}}) = 0 \]

مثال ۱۴:
معادله را در یک پاییده که جذر آن ۴، ۲/۳ باشند.

\[x_1 = \sqrt{3} \]
\[(x - \sqrt{3}) = 0 \]

\[x_2 = -2\sqrt{3} \]
\[(x + 2\sqrt{3}) = 0 \]
\[(x - \sqrt{3})(x + 2\sqrt{3}) = 0\]
\[
\frac{2}{x} + 2\sqrt{3}x - \sqrt{3}x - 2(\sqrt{3})^2 = 0
\]
\[
\frac{2}{x} + \sqrt{3}x - 6 = 0
\]

ماجذور: جذر های آن عبارت اند از:

<table>
<thead>
<tr>
<th>تمرین</th>
<th>عبارت است از</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5i</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>-5i</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2\sqrt{2} , \sqrt{2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تمرين: 5-2

معادلات ذیل را از طریق تکمیل مربع حل کنید:

1. \[4x^2 = 20\]
2. \[3x^2 = 21\]
3. \[10x^2 = 0\]
4. \[9x^2 = 0\]
5. \[2x^2 - 3 = 0\]
6. \[3x^2 - 7 = 0\]
7. \[2x^2 + 14 = 0\]
8. \[3x^2 + 15 = 0\]
9. \[ax^2 = b\]
10. \[\Pi x^2 = k\]
11. \[(x - 7)^2 = 5\]
12. \[(x + 3)^2 = 2\]
13. \[\frac{4}{9}x^2 + 1 = 0\]
14. \[\frac{16}{25}x^2 - 1 = 0\]
15. \((x - h)^2 = a \)

16. \(y = a(x - h)^2 + k \)

این معادلات را به طریقه تکیه مربع حل نمایید:

17. \(\frac{2}{x} + 6x + 4 = 0 \)

18. \(\frac{2}{x} - 6x - 4 = 0 \)

19. \(\frac{2}{y} + 7y - 30 = 0 \)

20. \(\frac{2}{y} - 7y - 30 = 0 \)

21. \(5x^2 - 4x - 2 = 0 \)

22. \(12y - 14y + 3 = 0 \)

23. \(2x^2 + 7x - 15 = 0 \)

24. \(9x^2 - 3x = -25 \)

این معادلات را با فرمول حل کنید:

25. \(\frac{2}{x} + 4x = 5 \)

26. \(\frac{2}{x} = 2x + 15 \)

27. \(2y^2 - 3y - 2 = 0 \)

28. \(5m + 3m - 2 = 0 \)

29. \(3t^2 + 8t + 3 = 0 \)

30. \(3u = 18u - 6 \)

31. \(3 + u \quad 12u \)

32. \(40 + 30p + 5p^2 = 0 \)

33. \(x^2 - x + 1 = 0 \)

34. \(x + x + 2 = 0 \)

35. \(x + 13 = 4x \)

36. \(2x + 1 = -5x^2 \)

حالت این معادله‌ها را تعیین کنید:

37. \(\frac{2}{x} - 6x + 9 = 0 \)

38. \(\frac{2}{x} + 10x + 25 = 0 \)

39. \(\frac{2}{x} + 7 = 0 \)

40. \(\frac{2}{x} + 2 = 0 \)

41. \(\frac{2}{x} - 2 = 0 \)

42. \(\frac{2}{x} - 5 = 0 \)
43. \(4x^2 - 12x + 9 = 0\)
44. \(4x^2 + 8x - 5 = 0\)
45. \(x^2 - 2x + 4 = 0\)
46. \(x^2 + 3x + 4 = 0\)
47. \(9t^2 - 3t = 0\)
48. \(4m^2 + 7m = 0\)
49. \(\frac{2}{y} = \frac{1}{2} y + \frac{3}{5}\)
50. \(\frac{2}{y} + \frac{9}{4} = 4y\)
51. \(4x^2 - 4\sqrt{3}x + 3 = 0\)
52. \(6y^2 - 2\sqrt{3}y - 1 = 0\)

معادلاتي را بنویسید که حل آنها عبارت است از :

53. \(-11, 9\)
54. \(-4, 4\)
55. \(7,\)
56. \(-\frac{2}{3}\)
57. \(-\frac{2}{5}, \frac{6}{5}\)
58. \(-\frac{1}{4}, -\frac{1}{2}\)
59. \(\frac{c}{2}, \frac{d}{2}\)
60. \(\frac{k}{3}, \frac{m}{4}\)
61. \(\sqrt{2}, 3\sqrt{2}\)
62. \(-\sqrt{3}, 2\sqrt{3}\)
63. \(3i, -3i\)
64. \(4i, -4i\)

این مثال ها را حل نمایید :

65. \(\frac{2}{x} - 0.75x - 0.5 = 0\)
66. \(5.33x^2 - 8.23x - 3.24 = 0\)
67. \(\frac{1}{x} = \frac{13}{6} \)
68. \(\frac{3}{x} = \frac{5}{3} \)

69. \(t + 0.2t - 0.3 = 0 \)
70. \(\frac{2}{p} + 0.3p - 0.2 = 0 \)

71. \(\frac{x}{x - \sqrt{2}} = 0 \)
72. \(\frac{x}{x - \sqrt{3}} = 0 \)

73. \(x + \sqrt{5}x - \sqrt{3} = 0 \)
74. \(2x + \sqrt{3}x - \pi = 0 \)

75. \(\sqrt{2x^2 - \sqrt{3}x - \sqrt{5}} = 0 \)
76. \(\sqrt{2x^2 + 5x + \sqrt{2}} = 0 \)

77. \((2t - 3) + 17t = 15 \)
78. \(2y^2 - (y + 2)(y - 3) = 12 \)

79. \((x + 3)(x - 2) = 2(x + 11) \)
80. \(9t(t + 2) - 3t(t - 2) = 2(t + 4)(t + 6) \)

81. \(2x^2 + (x - 4)^2 = 5x(x - 4) + 24 \)
82. \(\frac{c}{a} + c = 44 + c \)

هر کدام را ثبتو کنید:

83. \(\alpha \) مجموع جذور معادله \(ax^2 + bx + c \) مساوی با \(\frac{-b}{a} \) است.

84. \(kx^2 - 17x + 33 = 0 \)

85. \(kx^2 - 2x + k = 0 \)

86. \(\frac{x}{x} - kx + 2 = 0 \)
87. $x^2 - (6 + 3i)x + k = 0$ است.

88. قیمت k را در صورتی پیدا کنید که حاصل $0 = (1 - 2k)^2 + 4k$ باشد. ضرب جذر 3 باشد.

89. معادله را دریافت کنید که مجموع جذور آن 3 و حاصل ضرب آن 8 باشد.

90. معادله را دریافت کنید که جذور آن در دویل داده شده اند:

\[
\begin{align*}
\text{الف) } & \frac{2 + \sqrt{3}}{2}, \frac{2 - \sqrt{3}}{2} \\
\text{ب) } & g, h \\
\text{ج) } & 2 - 5i, 2 + 5i
\end{align*}
\]

91. در معادله: $0 = 3x^2 - hx + 4k$ قیمت های h و k را در صورتی دریافت کنید که مجموع جذور معادله $(12 -)$ و حاصل ضرب جذر معادله (20) باشد.

92. یک حل معادله: $0 = p(q - r)y + q(r - p)y + r(p - q) = 0$ است به (2)، حل دیگر آن پیدا کنید؟

93. مجموع مربع جذور این معادله $0 = 2x^2 + 2kx - 5$ مساوی به ۲۶ است، یکی مطلقه k را دریافت کنید؟

94. ثبوت کنید که جذور معادله $ax^2 + bx + c = 0$ می‌باشند:

\[
\begin{align*}
2x + bx + a &= 0 \\
a &\neq 0 , c &\neq 0
\end{align*}
\]
حاصل ضرب و حاصل جمع جذر معادله درجه دوم: \(ax^2 + bx + c = 0 \)

1. حاصل ضرب جذر معادله درجه دوم مساوی است به \((c/a)\) که طور ذیل بدست می‌آید:

\[
\begin{align*}
(x_1) (x_2) &= \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) = \frac{c}{a}
\end{align*}
\]

2. حاصل جمع جذر معادله درجه دوم مساوی است به \((-\frac{b}{a})\) که طور ذیل بدست می‌آید:

\[
\begin{align*}
x_1 + x_2 &= \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) + \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) = -\frac{b}{a}
\end{align*}
\]

\[\text{نظریه ترتیب}: 208\]
اهداف:

با تکمیل کردن این بخش شما قادر خواهید شد که:
- فرمول را از جنس یک حرف حل نمایید.
- پرایم های تطبیقی که ذریعه فرمول درجه دوم حل میشود، عمل می‌نمایند.

فرمول‌ها:

برای اینکه یک فرمول را از جنس یک حرف مشخص حل نماییم، از قوانع حل
استفاده می‌نماییم. در قوانع حل معادلات ما به خاطر داریم که علیه های جمع،
تفریق، ضرب و یا تقسیم را به طور مستقل و تطبیق معادله تطبیق می‌نماییم.

مثال اول:
برای یک حلق کنید (جسم استوانه)

\[V = \pi r^2 h \]

برای یک حلق کنید

\[V = \pi r^2 h \]

\[\frac{V}{\pi h} = r \]

\[\sqrt{\frac{V}{\pi h}} = r \]
1. تمرین: حجم مخروط داده شده است:
\[V = \frac{1}{3} \pi r^2 h \]
برای حل کنید:

مثال دوم: معادله را برای \(r \) حل کنید:

مساحت سطحی مخروط (\(\mu \))

\[A = \pi rs + \pi r^2 \]

\[\pi r^2 + \pi rs - A = 0. \]

\[a = \pi, \quad b = \pi s, \quad c = -A. \]

\[r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[r = \frac{-\pi s \pm \sqrt{(\pi s)^2 - 4 \times \pi (-A)}}{2\pi} \]
مثال از ریح مربوط:

مبلغ 2560$ به مقدار سالانه (i) به ریح مربوط کمکه شده است بعد از مدت 2 سال سرمایه به 3240$ بالغ می‌گردد. نزدیک‌ترین را معلوم کنید.

\[A = P (1 + i) \]

\[3240 = 2560 (1 + i) \]

\[\frac{3240}{3560} = (1 + i) \]

\[\frac{\sqrt{324}}{\sqrt{256}} = [1 + i] \]

\[\frac{18}{16} = 1 + i \]

\[-1 - \frac{18}{16} = i_1 \]

\[1 + \frac{18}{16} = i_2 \]

\[\frac{2}{16} = i_2 \]
34

جواب منفی غلط است.

\[i = \frac{2}{16} = 0.125 = 12.5\% \]

\[\text{جواب: } \frac{1}{2} = \frac{2}{16} = \frac{1}{8} \]

\[(16t + v_0) = 16t \]

\[\text{مثال 4: } \]

یک زینه که تا طول آن 10 فت است به یک دیوار تکیه دارد. قاعده زینه از دیوار 6ft فاصله دارد. بعداً قاعده زینه به اندازه 3ft پیشتر، از دیوار کش می‌شود شما معلوم کنید که رأس زینه چقدر پایین می‌آید؟\n
پیش‌برداری: \(h \) را در \(\text{تغییرات اکسترمم} \) می‌گیریم.\n
در مثلث قائم‌ الزاویه \(\text{PQR} \) داریم:

\[h + 6 = 10 \]

\[(h - d) + 9 = 10 \]

از معادله (1) \[h = 8 \]

\[\frac{2}{16} \]
دستگاه اولیه (1) فرمول سقوط آزاد در سیستم انگلیسی (\(g = 32 \text{ft/sec}^2 \)) \(s = \frac{\sqrt{76}}{2} = \frac{16 + 2\sqrt{19}}{2} = 8 + \sqrt{19} \).

\(d = 8 + \sqrt{19} \) \(d = \frac{16 + 2\sqrt{19}}{2} = 8 + \sqrt{19} \).

\(d_1 \approx 8 + 4.359 \approx 12.359 \) (ارزیابی تقریبی)

\[S = \frac{1}{2} gt^2 + V_0 t \]

\(V \) سرعت اولیه، \(t \) وقت سقوط.
تموین: (4)
یک زننه که طول آن 13ft است به دیوار تکیه دارد. قاعده زینه از دیوار دور می‌پاشد. اگر قاعده زینه 4ft دیگر از دیوار در شود راس زینه چقدر پایین خواهد آمد؟

در سقوط آزاد، ارتفاع سقوط در طرف t ثانیه با فرمول ذیل ارائه می‌گردد:

درین فرمول، \(V \) سرعت اولیه می‌باشد.

\[S = 4.9t^2 + v_0 t \]

\(g = 9.8 \text{ m/sec}^2 \)

\(s \) و \(g \) مسافت به متر، (سیستم متریک) و \(t \) ثانیه به متر.

مثال 5:

یک شی از بالای یک کمان که ارتفاع آن 195 متر است رها می‌شود. بعد از چقدر وقت بزین می‌برسد؟

چون جرم با سرعت صفر سقوط می‌کند، لذا قیمت‌ها را در معادله اول وضع

\[S = 4.9t^2 + v_0 \]

\[195 = 4.9t^2 + 0 \times t \]

\[195 = 4.9t^2 \]

\[t = \sqrt{39.8} \approx 6.31 \text{ ثانیه} \]

\[t = 6.31" \]

جواب (ثانیه) 6.31
ب) اگر جسم به سرعت 16m/sec طرف زمین رها شود، وقت تصادم بر نیم
\[V_0 = 16m/sec \]
چنین محاسبه می‌شود:

\[195 = 4.9t^2 + 16t \]
\[0 = 4.9t^2 + 16t - 195 \]
\[t = \frac{16 \pm \sqrt{16^2 - 4 \times 4.9 \times (-195)}}{2 	imes 4.9} \]
\[t = 8.15 \]

(3) بعد از این وقت، زمین می‌رسد.

(4) اگر جسم مذكور به سرعت اولیه 16m/sec رها شود، بعد از 3 دقیقه چقدر مسافت را طی می‌کند.

\[V_0 = 16m/sec \]
\[S = \frac{4.9t^2 + V_0 t}{2} \]
\[= \frac{4.9 \times 9 + 16 	imes 3}{2} = 92.1 \text{ meter} \]

مسافت که جسم در ظرف 3 ثانیه طی می‌کند 92.1 متر می‌شود.

تمرين ٦ - ٧

الف: فرمول‌های ذیل را از جنس یک حرکت مشخص حل نمایید.

1. \[F = \frac{KM_1M_2}{d^2} \]
2. \[E = mc^2 \]
3. \[S = \frac{1}{2} at^2 \]
4. \[V = 4\pi r^2 \]
5. \[S = -16t^2 + V_0t \]
6. \[A = 2\pi r^2 + 3\pi rh \]

215
7. \(d = \frac{2n - 3n}{2}, \ n = ?\)

8. \(\sqrt{2t^2 + 3k} = \Pi t, \ t = ?\)

9. \(A = P(1 + i)^2, \ i = ?\)

10. \(A = p\left[1 + \frac{2}{1 + i}\right], \ i = ?\)

ب: نرخ مقدار چند است، اگر به ریج مرکب سالانه سرمایه کمی گذاری شده باشد.

- 11. مبلغ 5120 $ بعد از مدت دو سال به 7220 $ میرسد.
 \(i = ?\)

- 12. مبلغ 1000 $ بعد از مدت دو سال به 1210 $ میرسد.
 \(i = ?\)

- 13. مبلغ 8000 $ بعد از مدت دو سال به 9856.80 $ میرسد.
 \(i = ?\)

- 14. مبلغ 1000 $ بعد از مدت دو سال به 1271.26 $ میرسد.
 \(i = ?\)

تعداد قطر هاچه یک مضلع =

\[d = \frac{2n^2 - 3n}{2}\]

درین فرمول: تعداد قطر

\(d = \frac{2n^2 - 3n}{2}\)

تعداد اضلاع

\(n = \)
پیک کنترل اضلاع دارای 27 قطر میباشد تعداد اضلاع آن چند است؟
پیک کنترل اضلاع دارای 44 قطر میباشد تعداد اضلاع آن چند است؟
پیک زینه که طول آن 10ft است به یک دیوار تکه دارد. قاعده زینه از دیوار به اندازه 6ft دور است. قاعده زینه چقدر کش شود که رأس زینه بهم؟
اندازه پایین باید؟
پیک زینه 13ft فت به یک دیوار تکه دارد. قاعده زینه از دیوار به اندازه 5ft دور است. قاعده زینه چقدر کش شود که سر زینه به همان اندازه پایین باید؟
مساحت یک مثلث 2cm² میباشد. قاعده آن از ارتفاع اش به اندازه 3cm طولتر است. ارتفاع مثلث چند است؟
ضلع پیک مریع 90ft است. قطر مریع چند فت است؟
دو ریل A و B یک شهر را به زاویه قایم در یک وقت ترک میکنند. ریل B به اندازه 5mph از ریل A سرعت میبرد. بعد از 2 ساعت هر دو ریل 50 میل از همیگر دور میشوند. سرعت هر ریل را معلوم کنید؟
ریل A و ریل B یک شهر را به زاویه قایم در عین وقت ترک میکنند.
ریل A نظر به ریل B به اندازه 14km/h سرعت میبرد. بعد از 5 ساعت به اندازه 130km از همیگر دور اند. سرعت هر ریل را معلوم کنید؟
الف: یک جسم از یک طیاره که 75m ارتفاع دارد پایین رها (سقوط آزاد) شده است. بعد از چقدر وقت به میکنند؟
ب: یک جسم از همین طیاره به سرعت اولیه 30m/sec بطرف زمین پرتاب گردد. بعد از چقدر وقت به میکنند؟
ج: اکثر همین جسم به سرعت 30m/sec بطرف زمین پرتاب شد. بعد از مدت 2 ثانیه چقدر فاصله را طی میکنند؟
الف: یک جسم از ارتفاع 500m از طیاره رها شده است بعد از چقدر وقت برزینه میرسد؟ (سقوط آزاد).

ب: جسم به سرعت 30m/sec طرف زمین پرتاب گردیده بعد از چقدر وقت برزینه میرسد؟

ج: جسم بعد از 5 دقیقه به چقدر فاصله با زمین می‌آید، درصورتی‌که این جسم به سرعت 30m/sec پرتاب شده باشد؟

قطر یک مریخ به اندازه 1.341 سانتی متر از ضلع آن دوبلتر است. ضلع مربع را معلوم کنید؟

وتر یک مثلث قائم الزاویه (8.31cm) سانتی متر است. مجموع طول های اضلاع قائم آن مثلث 10.23 سانتی متر است. طول هر ضلع چند است؟

فورمول ذیل به حل پربلوم های 30-27 کمک می‌سازد.

\[T = C \cdot N \]

قیمت هر جنس \(c \) هر جنس \(T \) مجموعی یک جنس \(N \) تعداد اجناس

یک گربه از شاگردان در خریداری کشتی که قیمت آن 140$ است شریک شدند. در این معامله، 3 نفر شاگرد از شرکت برآمدند. که این وضع سهمیه هر شاگرد را به 15$ بالا برد. چند نفر در خریداری کشتی شریک می‌باشند؟

یک تیکه دار چند نرمه زمین را به مبلغ 8400$ خریداری نمود، تمام نرمال‌های فروخته شدند. و قیمت فروش‌های نرمه 1000$ شد. قیمت فروش هر
نمّره نظر به قیمت خریده 350 $ زیاد تر است. شما معلوم کنید که اصلاً ۲۹. چند نمّره زمین خریداری شده بود؟

یک تکه داریک ملکیت را به 720 $ میخرد. اگر هر نمّره زمین این ملکیت 15 $ ارزانتر خریداری میشود در آن صورت 4 نمّره زمین یزاد تر بدهست می‌آمده. جمله چند نمّره زمین خریداری کرده است؟

در یک هوتل برای مهاسایی شاگردان 112 $ بمصرف میرسد. اگر 14 شاگرد جدید در سهمیه مهاسایی سهم گردد. مصرف هر شاگرد به اندازه 4 $ کمتر میشود سهیم هر شاگرد قبل چقدر بود؟

به مقصّد x حل نمایید.

\[kx + (3 - 2k) x - 6 = 0 \]

\[x - 2x + kx = kx^2 \]

\[(m + n)^2 x + (m + n) x = 2 \]

\[x^2 - 3xy - 4y^2 = 0, \quad (a) \ x = ?, \quad (b) \ y = ? \]

در ربع مرکب سالانه نرخ فاّیده چند است؟ در صورتی که سرمایه در ظرف سه سال از 9826 $ به 13,704 $ افزایش یابد.

یک مثلث مثلث متساوی الاضلاع در داخل دو ایبری که محیط آن با است طووری ۶۶۱ است. تا چاگژین شده که هر سه راس آن با محیط دایره در تماس اند. مساحت مثلث مذکورا معلوم کنید.

۳۶. در مثلث متساوی الاضلاع بالترتیب دارایی اضلاع \(a, b, \) و \(\frac{a}{2} \) میباشد. طول ضلع یک مثلث متساوی الاضلاع سوم (\(r \)ا) معلوم کنید که مساحت آن مثلث سوم مساوی به مجموع مساحت در مثلث اولی باشد؟

39. کدام مثلث مساحت زیادتر دارد؟ یک مستطیل که مساحت آن 12cm, 12cm میباشد، در یک مثلث قائم الزاویه ABC که در شکل نشان داده شده جابجاکرده، ابعاد مستطیل چنداست؟

40. در یک ریکارد جهانی پرتاب آزاد بدون پارашوت، یک خانم ریکارد 175ft ارتفاع را قاچق کرد. وقت تقریبی این پرتاب آزاد چقدر بود؟
حل معادلات جذر دار:
معادله جذر دار عبارت از آن معادله است که متحول های معادله تحت یک یا چندین جذر واقع باشد. بطور مثال:

\[3 \sqrt[3]{x} + 3 \sqrt[3]{4x} - 7 = 2\]

برای حل این معادله طریقه جدید را بکار می‌بریم:

\[\text{قضیه ۵:} \quad a = b\]

برای هر عدد \(a\) اگر رابطه \(a = b\) صحیح باشد، پس رابطه \(a = b\) نیز صحت است.

این موضوع قابل توجه است که در صورت تطبیق طریقه مربع ساخته‌های دو طرف، معادله جدیدی بدست می‌آید که معادل معادله اولی نیستند. بطور مثال، وقتی که ما هر دو طرف معادله را مربع می‌سازیم، معادله به‌دست می‌آید که حل آن با معادله‌ای اولی مطابقت نیستند.

بطور مثال: در معادله \(x = 3\),

این معادله یک حل دارد. اگر هر دو طرف معادله را مربع می‌سازیم معادله که بدست می‌آید عبارت است از:

\[\frac{2}{x} = 9\]

که در حل دارد (3, 3). پس معادله \(3^2 = x\) و 9 = \(\sqrt[3]{x}\) معادل یکدیگر نیستند.

\[\sqrt[3]{x} = 3 - 3\]

یک مثال دیگر را در نظر می‌گیریم. (1) معادله \(x^2 - 3 = 0\) به دست می‌آید عبارت است از:

۲۰۱
ملاحظه می‌شود که عدد (9) در معادله (1) امتحان نمی‌شود.

مثال اول: معادله \(\sqrt{x} = 9 \) را حل کنید.

\[
\begin{align*}
2 \sqrt{x} &= 2, \\
\sqrt{x} &= 1, \\
\sqrt{x} &= 3,
\end{align*}
\]

\(x = 9 \)

\[x - 5 = \sqrt{x + 7} \]

\[
(x - 5)^2 = (\sqrt{x + 7})^2 \\
2 \cdot x - 10x + 25 = x + 7 \\
2x - 11x + 18 = 0
\]

\[x_1 = 9 \quad \text{یا} \quad x_2 = 2 \]

از نتیجه فوق نمایان می‌شود که حل معادله (9) و (2) می‌باشد. هرگاه عدد (9) را در معادله اصل تعویض نماییم. معادله قرار دیل تکان می‌شود.

اول 9 را در معادله تعویض می‌نماییم.

\[x - 5 = \sqrt{x + 7} \]

\[
\begin{array}{c|c}
9 - 5 & \sqrt{9 + 7} \\
4 & 4
\end{array}
\]

حال اگر عدد (2) که آن هم حل معادله می‌باشد، در معادله اصل تعویض نماییم دیه می‌شود که این قیمت صدق نمی‌کند. لذا عدد (2) حل معادله نمی‌باشد.

(2 حل خارجی معادله است.)

\[
\begin{array}{c|c}
2 - 5 & \sqrt{2 + 7} \\
-3 & 3
\end{array}
\]
تمرین حل کنید : بعد از حل، نتیجه را امتحان نمایید.

1. $\sqrt{2x} = -5$

2. $x - 1 = \sqrt{x + 5}$

مثال دوم : معادله $5 = 1 + \sqrt[3]{4x^2 + 1}$ را حل نمایید.

$\sqrt[3]{4x^2 + 1} = 5$

$4x^2 + 1 = 125$

$x = \pm \sqrt[3]{31}$

تمرین : معادلات دیل را حل نمایید و هم امتحان معادله را فرموش نمایید.

3. $\sqrt[3]{3x - 1} = 2$

$\sqrt[3]{4x^2 + 1} = 5$

$(\sqrt[3]{4x + 1})^3 = 125$

$x = 31$

$x = \pm \sqrt{31}$

معادلاتی که جذر بزرگ هستند:

قاعده عمومی برای حل معادلات شامل جذر دو چهساده، قرار دلیل تشریح می‌گردد:

1- یکی از جرز جذری را جدا کنید.

2- طریقه مربع ساختن یا مکعب ساختن را تطبیق نمایید.

3- اگر حد جذری باقی ماند، مرحله (1) و (2) را باز تطبیق کنید.

4- حل معادله را در معادله اولی امتحان نمایید.
مثال سوم: معادله ذیل را حل نمائید:

\[\sqrt{2x - 5} - \sqrt{x - 3} = 1 \]

\[\sqrt{2x - 5} = 1 + \sqrt{x - 3} \]

\[(\sqrt{2x - 5})^2 = (1 + \sqrt{x - 3})^2 \]

\[2x - 5 = 1 + 2\sqrt{x - 3} + (x - 3) \]

\[x - 3 = 2\sqrt{x - 3} \]

\[(x - 3)^2 = (2\sqrt{x - 3})^2 \]

\[2x - 6x + 9 = 4(x - 3) \]

\[2x - 6x + 9 = 4x - 12 \]

\[2x - 10x + 21 = 0 \]

\[(x - 7)(x - 3) = 0 \]

\[x_1 = 7 \quad x_2 = 3 \]

مثال چهارم: معادله ذیل را حل نمائید:

\[A = \sqrt{1 + \frac{a^2}{b^2}} \]

\[A = \sqrt{1 + \frac{a^2}{b^2}} \]

\[\sqrt{b^2(A - 1)} = a \]

\[b\sqrt{A - 1} = a \]

\[\frac{a}{b} = 1 + \frac{2}{b} \]

\[\frac{a}{b} = 2 + \frac{2}{b} \]

\[b\frac{a}{b} - b = \frac{2}{b} \]

\[\sqrt{\frac{2}{b} \frac{a}{b} - b} = a \]
تمرين 9.7

معادلات ذیل را حل و امتحان نویجه امتحان کنید.

1. \(\sqrt{3x - 4} = 1\)
2. \(\sqrt{2x + 1} = -5\)
3. \(\sqrt{x^2 - 1} = 1\)
4. \(\sqrt{m + 1 - 5} = 8\)
5. \(\sqrt{y - 1 + 4} = 0\)
6. \(5 + \sqrt{3x^2 + \pi} = 0\)
7. \(\sqrt{x - 3} + \sqrt{x + 5} = 4\)
8. \(\sqrt{x - \sqrt{x - 5}} = 1\)
9. \(\sqrt{3x - 5} + \sqrt{2x + 3} + 1 = 0\)
10. \(\sqrt{2m - 3} = \sqrt{m + 7 - 2}\)
11. \(3\sqrt{6x + 9} + 8 = 5\)
12. \(5\sqrt{3x + 4} = 2\)
13. \(\sqrt{6x + 7} = x + 2\)
14. \(\sqrt{6x + 7} - \sqrt{3x + 3} = 1\)
15. \(\sqrt{20 - x} = \sqrt{9 - x} + 3\)
16. \(\sqrt{n + 2} + \sqrt{3n + 4} = 2\)
17. \(\sqrt{7.35x + 8.051} = 0.345x + 0.067\)
18. \(\sqrt{1.213x + 9.333} = 5.343x + 2.312\)
19. \(\sqrt[3]{x} = 2\)
20. \(\sqrt[5]{x} = 2\)
در تمرینات 28 و 27 متحول ها نمایندگی از اعداد مثبت می‌باشند.

28. \[H = \sqrt{c^2 + d^2} \]

29. از یک کلکسیون طیاره که به ارتفاع 30,000 ft در پرواز باشید، چقدر دورتر فاصله را دیده می‌توانید؟

30. یک نفر از یک برج که به 72 ft ارتفاع دارد چقدر دورتر فاصله را دیده می‌تواند؟

31. دید افق یک نفر از یک کلکسیون یک طیاره 144 مایل است. ارتفاع طیاره چند است.
32. یک شخص به فاصله ۱۱ میل دو مرد دیده می‌تواند. شخص مذکور به کدام ارتفاع موقعیت دارد.

معادلات دیل را حل نمایید:

33. \((x - 5)^{\frac{2}{3}} = 2\)
34. \((x - 3)^{\frac{2}{3}} = 2\)
35. \(\frac{x + \sqrt{x + 1}}{x - \sqrt{x + 1}} = \frac{5}{11}\)
36. \(\sqrt[3]{x + 25} - \sqrt{x} = 5\)
37. \(\sqrt{x + 2} - \sqrt{x - 2} = \sqrt{2x}\)
38. \(2\sqrt{x + 3} = \sqrt{x} + \sqrt{x + 8}\)
39. \(\sqrt[4]{x + 2} = \sqrt{3x + 1}\)
40. \(\sqrt[3]{2x - 1} = \sqrt{x + 1}\)
معادلاتیکه به شکل معادله دوم تعیین میشوند

اینکه با کمک کردن این بخش شما قادر خواهید شد که:
- معادلات را حل نمایید که به معادلات درجه دوم تعیین شوند.
- معادلات تطبیقی که از طریق معادلات درجه دوم حل میشوند، حل نمایید.

حل معادلاتیکه به شکل معادله دوم قابل تعیین میباشند:
در اکثر موضوعات فیزیک و سایننس با معادلاتی سروکار پیدا میکنیم که در حقیقت معادلات درجه دوم نیپاوشند و لیکن میتوان این معادلات را بطریقه معادلات درجه دوم حل نمود.

بطور مثال:
معادله $0 = 10 - 3\sqrt{x}$ را میتوانیم بطریقه نیکتونیک یا فورمول عمومی درجه دوم حل کنیم. بعد از آن با در نظر داشت $\sqrt{x} = u$ میتوانیم قیمت x را پیدا کنیم.

معادلاتیکه به این طریقه حل میگرددند عبارت اند از: معادلاتی که قابل تجزیه به معادله درجه دوم باشند.

وThêmیکه معادلات قابل تجزیه به معادلات درجه دوم را به خواهیم حل نماییم، نخست:
متحول معادله را با یک حرف دیگر تعویض میکنیم. چنانچه معادله را از نگاه متحول جدید حل میکنیم. و سپس متحول اول را از طریق تعویض متحول جدید دوباره بدست میآوریم.
مثال اول:
معادله $0 = 10 - 3\sqrt{x} + x$ را حل کنید. (1)

معادله را در معادله تعریضی نموده، معادله را از جنس x حل می‌کنیم.

$U = \sqrt{x}$ و $U^2 = x$

$\Rightarrow \sqrt{x} = -5 \quad \Rightarrow \sqrt{x} = 2$

$U_1 \Rightarrow \sqrt{x} = -5 \quad \Rightarrow \sqrt{x} = 2$

$U_2 \Rightarrow \sqrt{x} = 2$

$\Rightarrow x = 4$

$x + 3\sqrt{x} - 10 = 0$

$2U + 3U - 10 = 0$

$(U + 5)(U - 2) = 0$

$u_1 = -5 \quad \Rightarrow x = 4$

$u_2 = -2$

امتحان:

<table>
<thead>
<tr>
<th>$4 + 3\sqrt{4} - 10$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 + 6 - 10$</td>
<td>0</td>
</tr>
</tbody>
</table>

حل معادله:

4 است

مثال دوم:

معادله $0 = 7 + 6x - 6x^2$ را حل کنید.

نخست، $u = \frac{x}{2}$ را به کار برده معادله مذکور را با روش معادله درجه دوم حل می‌کنیم.

$\Rightarrow x - \frac{6x^2}{2} + 7 = 0$

$\Rightarrow u = \frac{x}{2}, \quad \Rightarrow u = \frac{x^2}{4}$

$u - 6u + 7 = 0$

$a = 1, \quad b = -6, \quad c = 7$

$u = \frac{-b \pm \sqrt{b - 4ac}}{2a} = \frac{(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 7}}{2 \times 1}$

$\Rightarrow 221$
قيمت متحول اولی را از طریق تعویض درباره بدست آورده می‌توانیم.

حال u را با x در معادله تعویض می‌کنیم:

$$u = \frac{6 + \sqrt{8}}{2}$$

$$u = \frac{2 \times 3 \pm 2 \sqrt{2}}{2 \times 1} = 3 \pm \sqrt{2}.$$

$x = \mu$ \quad $x^2 = 4$

$$x^2 = 3 + \sqrt{2}, \quad x = \pm \sqrt{3 + \sqrt{2}}$$

$$x^2 = 3 - \sqrt{2}, \quad x = \pm \sqrt{3 - \sqrt{2}}.$$

چار جواب عبارت اند از:

$$\sqrt{3 + \sqrt{2}}, \quad -\sqrt{3 + \sqrt{2}}, \quad -\sqrt{3 - \sqrt{2}}, \quad \sqrt{3 - \sqrt{2}}.$$

مثال سوم:

معادله $0 = 24(x^2 - x)^2 + 14(x^2 - x) - 14(x^2 - x) - 14(x^2 - x) + 24 = 0$ را حل کنید.

فرضاً $u = x - x$ باشد.

$$2(x^2 - x) + 14(x^2 - x) + 24 = 0.$$

فلهذا $u = x - x \leq 2$

$$2u - 14u + 24 = 0 \quad \frac{2}{x - x} = 2$$

$$(u - 12)(u - 2) = 0 \quad \frac{2}{x - x} - 2 = 0$$

$u = 12. \quad u = 2 \quad (x - 2)(x + 1) = 0$

$$\frac{x^2 - x = 12}{x = 2.} \quad x = -1.$$
هشت قیمت معادله عبارت اند از: 1, 2, 3, 4

\[x - x - 12 = 0 \]

\[(x - 4)(x - 3) = 0 \]

\[x = 4, x = -3 \]

معادله 2.5 را حل کنید:

\[\frac{2}{5} t - 2 = 0 \]

قیمت های u را تعیین نمایید:

\[u - u - 2 = 0 \]

\[(u - 2)(u + 1) = 0 \]

\[u_1 = 2, u_2 = -1 \]

\[t^{\frac{1}{5}} = u \]

\[t = 2 \]

\[t = -1 \]

\[\text{معادله 4 را حل کنید:} \]

\[4 \]

\[x + 3x - 4 = 0 \]

\[\frac{4}{x} = u \]

\[u + 3u - 4 = 0 \]

\[(u + 4)(u - 1) = 0 \]
\[u = -4, v = 1 \]
\[2x^2 = -4, \quad \frac{2}{10}x = 1. \]
\[x = \pm 2i, \quad x = \pm 1. \]

جوابات: \(-2, 1, -1, -2, 1\).

تمرين سوالات ذيل را حل كنيدي:

1. \(\sqrt{x} + \sqrt{x} - 12 = 0 \)
2. \(4 - 10x^2 + 11 = 0 \)
3. \(\frac{2}{2} - \frac{2}{2} - (\frac{2}{2} - \frac{1}{2}) = 0 \)
4. \(\frac{3}{3} - \frac{3}{3} - 10 = 0 \)
5. \(4 + 5x - 36 = 0 \)

مثال ششم : (سوال چاه)

جسم را در چاه می‌اندازیم سرعت صوتی جسم به آب بعد از دور تا پا در بالای چاه
شنیده می‌شویم. سرعت صوت (1100 ft/sec) است. معلوم کنید که چاه مذکور چقدر
عمق دارد؟

حل :

(1) آشنا شدن به پربرنامه :

نخست پربرنامه را حساب کرده عناصر معلوم و مجهول را با حروف مخصوص ارائه
عمق چاه را \((s)\) و وقتی که جسم به آب چاه میرسد آنرا \((t_1)\) نام می‌گذاریم. و وقت که صدا از عمق چاه بالای چاه میرسد آنرا \((t_2)\) نام می‌گذاریم. مجموعه هر دو زمان

\[
\frac{t_1 + t_2}{2} = \frac{t}{2}
\]

عبارت اند از: یک عبارت رابطه بین هر دو وقت مسافه را مطابق فرمول (سقوط آزاد) چنین ارائه می‌شود:

\[
S = \frac{1}{2} \cdot 16t^2 + V_0 t
\]

و سقوط آزاد (در صورتی که \(s\) از جنس فت باشد. سقوط آزاد رهایی از زمان \((t)\) چنین جسم آزادانه رها شده، بنابراین سرعت اولیه \(V_0\) مساوی به صفر است. زمان \((t)\)
را قرار دیل بدست می‌آوریم.

\[
S = 16 t_i^2
\]

\[
t = \frac{\sqrt{s}}{4}
\] \text{(2')}

سقوط آزاد، سرعت اولی صفر

dر مرحله دروم زمان \((\frac{1}{2}t^2)\) را در معادله سرعت صوت (1100 \text{ ft/sec}) تعیین می‌کنیم که عبارت است از:

\[
t = \frac{s}{1100} \quad \text{س} = 1100 t_2
\]

چون زمان رسیدن سنگ به سطح آب، و زمان رسیدن صوت به بالای چاه مجموعه‌اند:

\[
\sqrt{s} \quad \text{یا} \quad \frac{s}{4} = \frac{2}{t_2} + \frac{1}{1100}
\]

سوم: حل معادله (2) را با استفاده از فرمول معادله دچاره دوم اجرا می‌کنیم:

\[
s = 16 t_i^2 + V_0 t \quad \text{ ... (1)}
\]

\[
s = 16 t_i^2 \quad t = \frac{\sqrt{s}}{4} \quad \text{ (2)}
\]

\[
S = (1100 \text{ ft/sec.}) \times t_2
\]

\[
s = 1100 \times t_2 \quad t = \frac{s}{1100} \quad \text{............... (3)}
\]
\[t + \frac{t}{2} = 2, \quad \frac{s^2}{4} + \frac{s}{1100} = 2 \quad \ldots \quad (4) \]

\[275\sqrt{s} + s = 2200, \quad s + 275\sqrt{s} - 2200 = 0 \]

\[u = \sqrt{s}, \quad u^2 = s \]

\[u + 275u - 2200 = 0 \]

\[u = \frac{-275 \pm \sqrt{275^2 + 8800}}{2} \]

\[u = \frac{-275 \pm 290.56}{2} \]

\[u \approx -275 + 290.56 = \frac{-15.56}{2} \approx 7.78 \]

\[s \approx 60.5284 \quad (\text{ft}) \]

\[(\text{ft} / \text{sec}) = 60.53 \text{ ft} \]

Problem:

6. A body falls into a stream of water and after 5 seconds is recorded to have fallen a distance of 1100 ft/second (1100 ft/sec). Given that the sound speed is 1000 ft/sec, determine the depth.
تمرين 8 - 2

معادلات ذيَّل را حل كِيند؟

1. \(x - 10\sqrt{x} + 9 = 0 \)
2. \(2x - 9\sqrt{x} + 4 = 0 \)
3. \(\frac{4}{x} - \frac{2}{x} = 0 \)
4. \(\frac{4}{x} - 3\sqrt{x} + 2 = 0 \)
5. \(\frac{3}{2}t + \frac{1}{2} + 6 = 0 \)
6. \(\frac{3}{2}w - 2w - 8 = 0 \)
7. \(\frac{1}{2}z = \frac{1}{4}z + 2 \)
8. \(\frac{1}{3} = m - m \frac{1}{6} \)
9. \((x - 6x)^2 - 2(x - 6x) - 35 = 0 \)
10. \((1 + \sqrt{x})^2 + (1 + \sqrt{x}) - 6 = 0 \)
11. \((y - 5y)^2 + (y - 5y) - 12 = 0 \)
12. \((2t + t)^2 - 4(2t + t) + 3 = 0 \)
13. \(\frac{4}{w} - 4w - 2 = 0 \)
14. \(t - 5t + 5 = 0 \)
15. \(\frac{-2}{x} - \frac{1}{x} - 6 = 0 \)
16. \(4x - x - 5 = 0 \)
17. \(2x + x = 1 \)
18. \(10 - 9m = m^2 \)
19. \(\frac{4}{x} - 24x - 25 = 0 \)
20. \(\frac{4}{x} - 5x - 36 = 0 \)
21. \(\left(\frac{2}{x} - 2 \right)^2 - 7 \left(\frac{2}{x} - 2 \right) - 18 = 0 \)

الإجابة: 226
حل پرسش:

29- سنگی از یک قله رها شده بعد از 3 ثانیه صداه تصادم سنگ بزمین به بالای قله میرسد. اگر سرعت صوت (1100 ft/sec) فرض شود، آن قله چقدر ارتفاع خواهد داشت؟

30- سنگی از قله گرفته شده است و بعد از مدت 4 ثانیه صداه تصادم سنگ بزمین بالایی قله میرسد. اگر سرعت صوت (1100 ft/sec) تصور
شود. بلندی قله را معلوم کنید؟

سوالات ذیل را حل کنید: (جوابات را دوباره امتحان کنید)

31. $6.75x = \sqrt{35x} + 5.36$
32. $\pi x^4 - \sqrt{99.3} = \frac{2}{\pi} \cdot x^2$
33. $9x^2 - 8 = x^3$
34. $\sqrt[3]{2x + 3} = \sqrt[4]{2x + 3}$
35. $\sqrt{x - 3} - \sqrt[4]{x - 3} = 2$
36. $\frac{3}{a - 26a^4} - 27 = 0$
37. $\frac{2x + 1}{x} = 3 + 7\sqrt{\frac{2x + 1}{x}}$

38. سوالات ذیل را حل کنید:

در شرایط یک سال مبلغ 2000$ در بانک سرمایه‌گذاری می‌شود. شش ماه بعد مبلغ 3000$ در یک حساب دیگر به این فایده کذشته می‌شود. در شرایط سال دیگر دیده می‌شود که در وجه حساب دوم نظر به حساب اول 956.80$ زیادتر است. اگر فایده به ریح مرکب نصف سال (نیم ساله) سرمایه‌گذاری شده باشد، نرخ فایده این سرمایه را معلوم کنید.
الف: اقتسام متحول

تحويل مستقيم:

في أكثر مسائل نزيك، "معادلات خطية" از طريق يک ثابت بوجود می‌آید.

یک در این معادله (k) عدد ثابت و مثبت می‌باشد.

درین معادله ملاحظه می‌شود: وقتیکه x زیاد می‌شود، قیمت y همچنان افزایش می‌یابد. درین حال، می‌گوییم که در معادله فوق حرکت k ثابت معادله است، و y تناسب مستقيم با x دارد درین معادله حکم قیمت های مثبت x، و y مطرح می‌باشد.

تعريف:

اگر در متحول x و y از طريق معادله، y=kx به هم ارتباط داشته باشند، که حرکت y ثابت و مثبت باشد، ما می‌گوییم که y با x ارتباط مستقيم دارد. به عبارت دیگر، y مستقیماً متناسب است به x.

به طور مثال:

(C=ΠD) یک موتور محیط یک دایره، مستقیماً متناسب است به قطر دایره ---. مثلاً، مسیر که پسرت ثابت حرکت می‌کند، دراینجا فاصله تناسب مستقیم با وقت دارد (65mph = 65t).

مثال اول:

معادله را در یکنت کنید که y با x تناسب مستقيم باشد و قیمت y مساوی 5.6 بوده وقتیکه 8 باشد.

حل: ما میدانیم که:

y=kx=5.6 k=0.7 می‌باشد.

پس (8)=0.7x=5.6

بعباره دیگر 0.7x=5.6

229
در مورد \(y = kx \) اگر \(x_1, y_1, x_2, y_2 \) حل معادله باشند، ما داریم:

\[
y_1 = kx_1 \quad \text{و} \quad y_2 = kx_2.
\]

پا

\[
y_2 = \frac{y_2}{x_2} = \frac{k}{k} \cdot \frac{x_2}{x_1} = \frac{x_2}{x_1} \quad \text{.........}
\]

و به عباره دیگر:

\[
y_2 = \frac{x_2}{y_1} \quad \text{اين معادله تناسب است} \ldots \frac{x_2}{y_1} = \text{(تناسب مستقيم)}
\]

مثال دوم:

(پرایل سپرینگ)

قانون هول (Hook's Law)، بیان می‌کند که: هر جسم ارتجاعی (سپرینگ) که ذریعه آویزان کردن یک وزن کش می‌شود، مقدار کشش آن مربوط است به مقدار وزن جسم آویزان شده. اگر مقدار یک سپرینگ تحت تأثیر (3kg) وزن (40cm) باشد هر گاه، وزن 2kg به همین سپرینگ آویزان شود، چقدر کش خواهد شد؟
راه حل اول: نخست قیمت k را با استفاده از معادله اول معلوم کنیم.

باما با استفاده از معادله حالت دوم، قیمت ثابت معلوم 2d حاصل می‌کنیم.

\[d = \frac{k w_1}{1} \quad d = \frac{40}{3} \times w_2 \]

\[40 = k \times 3 \quad d = \frac{40}{3} \times 2 \]

\[\frac{40}{3} = k \quad d = \frac{80}{2} \Rightarrow 26.7 \text{ cm} \]

\[\frac{d_1}{d_2} = \frac{2}{3} \quad d_2 = \frac{40\eta}{(1) \times 3} \quad d_2 = 26.7 \text{ cm} \]

توجه محسوس:

در بعضی حالات با معادلاتی سروکار پیدا می‌کنیم که مفهوم تناسب معکوس را ارائه می‌دهد.

\[y = \frac{k}{x} \]

که حرف k یک ضرب مشت است، در این رابطه (معادله پیش‌بینی) به رواج مشاهده می‌شود.

\[d = \frac{d}{d} = \frac{w}{w} \]

\[d_2 = \frac{40\eta}{2} \]

\[d_2 = 26.7 \text{ cm} \]

مثال 5:

معادله این مثال متحول را پیدا کنید که در آن y با x تناسب معکوس داشته و قیمت y است. وقتیکه 0.2 = x باشد.

\[y = 32 \]
تعاریف:
اگر دو متغیر x و y که یکدیگر از طریق معادله $y=k/x$ ارتباط داشته و ضریب مثبت باشد، گنگی میشود که y تناسب معکوس با x دارد، یا $y=6.4$ است.

و $y=k/x$ است.

اگر y تناسب معکوس با x داشته باشد که

و $(x_1, y_1), (x_2, y_2)$ حل معادله باشد، پس ما داریم:

$$y_1 = \frac{k}{x_1}, \quad y_2 = \frac{k}{x_2}, \quad \frac{y_2}{y_1} = \frac{k}{x_2} \cdot \frac{k}{x_1} \quad \rightarrow \quad \frac{k}{x_2} \cdot \frac{x_1}{x_1}$$

$$= \frac{x_1}{x_2}$$

معادله (2) y_1/x_1 y_2/x_2 y_1/y_2 $= 1/x_1 = x_1/x_2$ y_1/y_2 y_2/y_1 x_1/x_2 x_1/x_2

که معکوس را نشان می‌دهد که میزان آن را در حل پرایل‌ها بکار برد.
طرحه دوم: به طریقه تناسب (مسطح) ...

۲۰0 نفر در طرف یکسال از خانه بهرون می‌نشیند. حال، نفوس یک شهر دیگر ۷۰۵,۰۰۰ نفر می‌باشد. مقدار گاریپی این شهر در طرف یکسال چقدر خواهد بود؟
مثال سوم:
(طلاء وذخایر کالاها):

اکثر اقتصاددانان میگویند که قیمت جنگ با قیمت طلا تناسب معکوس دارد.
و وقتی قیمت طلا بلند می‌رود، قیمت اجناس پاتین می‌آید، برعكس، وقتی قیمت طلا نزول کرده قیمت اجناس بالا می‌رود. فرض کنید که شاخص (Index) قیمت‌های اجناس یک کمپانی 1846 و قیمت طلا 462$ در اونس بود. اوسط شاخص این کمپانی چند خواهد شد اگر نرخ دالر در اونس به 440$ سقوط کند؟

طريقة اول:

ابتدا k را از داده‌های آمار (آمار) معلوم کرده بعدا معادله را از نگاه D_2 حل می‌کنیم.

\[
D = \frac{k}{G} \quad \Rightarrow \quad D
\]

\[
k = \frac{1846}{462} = 1846 (462)
\]

\[= 852,852\]

\[
D_2 = \frac{852,852}{440} = 1938.3
\]

طريقة دوم:

طرح تناسب را بکار برده، قیمت (D_2) را پیدا می‌کنیم.
\[\frac{D_2}{D_1} = \frac{G_1}{G_2} \]

\[\frac{D_2}{1846} = \frac{462}{440} \]

\[D_2 = 1938.3 \]

Assessment of Transformation:

The transformation of a body of different shapes and sizes is facilitated by the equation of the transformation thereof.

Definition:

For a body, the transformation of a plane of area \(x \), by some factor transformation \(k \), and a body of area \(y \), by the transformation \(k \), there is a linear relationship

\[y = kx^2 \]

Example:

Let \(A = \pi r^2 \) be the area of a circle. The transformation of the area \(y \) is

\[y = k \frac{1}{x^2} \]

Example:

The weight \(W \) of an object (shape \(w \)) is proportional to the distance \(d \) from the center of mass.

\[W = \frac{k}{d^2} \]

\[y = kxz \]

مانند

مثال: معادله مساحت مثلث را تحت مطالعه قرار بگیرید \((1/2)h(b) = A\)

درین

معادله ملاحظه می‌شود که معادله تحول مشترک و مستقیم با \((b)\) و \((h)\) دارد. امثال

ثابت درین معادله عدد \((1/2)\) است.

\[A = \frac{bh}{2} \]

همچنان اقسام زیادی متحول‌ها در عین معادله یکجا باهم واقع شده می‌توانند.

بطور مثال:

\[y = k \frac{xz^3}{w^2} \]

که درین معادله \((y)\) تحول مینیماید مستقیماً با \((x)\) و مکعب \(z\) و معکوساً با

مربع \(w\) ثابت معادله می‌باشد.

تمویین

در حالیکه زمان برای راندن موتور به یک فاصله معین معکوساً متناسب به

سرعت موتور می‌باشد. مدت 5 ساعت را در بر می‌گیرد. که یک موتور به

سرعت 60 km/h این فاصله معین را طی کند. چقدر وقت خواهد گرفت که

همین فاصله ثابت را به سرعت 40 km/h طی نمایید.

نسبت \(A_1 / A_2\) را در صورتی پیدا کنید. که \(A_1\) و \(A_2\) بالترین

مساحت از یک دایره باشد.

\[7 - \text{معادله را پیدا کنید که در آن } y \text{ مستقیماً متناسب به مربع } x 	ext{ باشد. چنانچه} \]

\[12 = y \text{ می‌شود و وقتیکه } 2 = x \text{ باشد.} \]

246
تناسب را که شامل \(\frac{w_1}{w_2} \) باشد دریافت کنید. \(1 = \frac{K}{d} \)

معادله را بیپا کنید که \(y \) مختصات متناسب به مربع \(x \) باشد. وقتی \(x/y = 1 = 4/1 \) می‌شود، در صورتیکه \(x = y \) باشد.

تناسب را که شامل \(A_2/A_1 \) است در صورتی بیپا کنید که \(A_2 \) و \(A_1 \) بالترتیب مساحت های مثل باشند.

معادله را در یابید که در آن \(y \) تحویل مشترک به \(x \) و \(z \) داشته باشد. وقتی \(y = 4z \) می‌شود در صورتیکه \(2 = x \) و \(3 = z \) باشد.

معادله را در یابید که \(y \) تحویل مشترک با \(x \) و \(z \) داشته، و مختصات متناسب به مربع \(w \) باشد. درصورتیکه \(105 = y \) می‌شود وقتی \(5 = x \) و \(2 = z \) باشد.

در سقوط آزاد، مساحت مستقیماً متناسب است به مربع زمان (t). اگر یک جسم به فاصله 4 ft در 0.5sec سقوط کند و وقتی را دریافت کنید که حجم موصوف 64 ft سقوط نیاید.

مثال چهارم: (حجم تنه یک درخت)

حجم V چوب یک درخت تحویل مشترک دارد به: ارتفاع(h)درخت و مربع محیط

تنه درخت 7750ft^3 باشد ، ارتفاع درخت 5ft و محیط تنها 3ft^3 می‌شود. حال ارتفاع درخت چند خواهد بود؟ وقتیکه حجم درخت 37,975 ft^3 و محیط تنها درخت 7 ft باشند؟ (مشکل 672)}
طريقة اول : نخست چیست که را از روز عناصر معلوم تعیین کرده ، بعداً معادله
را از جنس h_2 حل می‌کنیم.

$$V_1 = k (h_1) (g)$$

$$7750 = k \times 100 \times 5$$

$$3.1 = k$$

$$37,975 = (3.1) (h_2) (7)$$

$$250 = h_2$$

$$h_2 = 250 \text{ ft}$$

طريقه دوم : با استفاده از رابطه تناسب (تناسب مستقيم) ، معادله را از جنس
حل می‌نماییم:

$$\frac{V_2}{V_1} = \frac{h_2}{h_1} \left(\frac{g_2}{g_1} \right)$$

$$\frac{37,975}{7750} = \frac{h_2}{h_1} \left(\frac{7}{5} \right)$$

$$h_2 = 250 \text{ ft}.$$
مثال پنجم:

وزن یک جسم (w) تناسب معکوس دارد به مربع فاصله (d) آن از مرکز کره زمین. نظر به سطح بحر (4000 میل از مرکز زمین)، وزن یک کیهان نورد 200 است. وزن موصوف را در صورتیکه به ارتفاع 100 میل از سطح زمین قرار داشته و سفینه هوانی در حالت حرکت نباشد معلوم کنید؟

حل: با استفاده از تناسب چنین داریم:

\[
\frac{w_2}{w_1} = \left(\frac{d_1}{d_2}\right)^2
\]

\[
w_2 = \frac{w_1 \times 4000^2}{200^2}
\]

\[
16,810,000 \times w_2 = 200 \times (16,000,000)
\]

\[
w_2 = 190 \text{ Lb}
\]

توضیح:

14- فاصله (d) که یک جسم، سقوط آزاد می‌نماید، تناسب مستقیم به مربع وقت (t) دارد. اگر یک جسم در غربه 0.5sec، 4ft سقوط می‌کند، وقتی را معلوم کنید که یک جسم به فاصله 64ft سقوط آزاد نماید.

15- a- وزن یک نورد قدر خواهد بود اگر وی به ارتفاع 100 میل از سطح زمین ارتفاع داشته باشد؟ وزن او در سطح زمین 200 پوند است.

b- در صورتیکه وزن موصوف 50 تنزیل نماید، ارتفاع وی را از سطح زمین معلوم کنید.
تمرين 9.2

معادلة تحولات آتي را تشكيل دهيد:

1. ارتباط مستقيم ب (x) دارد.
2. ارتباط معکوس دارد.
3. ارتباط معکوس دارد.
4. ارتباط مستقيم دارد.
5. ارتباط مستقيم مساوی با x و z دارد.
6. ارتباط مشترک با x و z تحول دارد.
7. ارتباط مشترک با x و z تحول دارد.
8. ارتباط مشترک با x و z تحول دارد.
9. ارتباط مستقيم دارد.
10. ارتباط معکوس دارد.
11. ارتباط معکوس دارد.

بیشتر

y = x و نتیجه x = y باشد.
y = x و nتیجه x = y باشد.
y = x و زتیجه x = y باشد.
y = x و زتیجه x = y باشد.
y = x و نتیجه x = y باشد.
y = x و نتیجه x = y باشد.
y = x و نتیجه x = y باشد.
y = x و نتیجه x = y باشد.
y = x و نتیجه x = y باشد.
y = x و nتیجه x = y باشد.
خواهد بود؟

12. یا تحول مستقیم دارد با مربع x یا اگر x ضرب شود با n تاثیر آن بالای y نفرها.

چه خواهد بود؟

13. مقدار کتالیت هوا (A) که به اتمسفر داخل میشود تناسب مستقیم دارد به تعداد مردم (N) که در یک منطقه زیست می‌مانند. اگر 6,000 نفر (نفوس) باعث تولید 42,600 (تن) کتالیت در هوا گردد، آلودگی هوا در یک شهر چقدر خواهد بود؟ در صورتی که شهر دارای (نفوس) 75,000 نفر باشند گردد؟

14. حجم (V) یک کتالیت غاز رابطه مستقیم دارد به درجه حرارت (T) و معکوساً رابطه دارد با فشار (p). حجم V = \(231 \text{ in}^3 \) میشود، وقتی \(p = 20 \text{ lb/in}^2 \) و فشار \(T = 420 \text{ F} \) باشد. حجم همین کتالیت غاز به هندی میشود اگر \(P = 15 \text{ lb/in}^2 \) و \(T = 300 \text{ F} \) باشد.

15. (مقاومت مصنوعی) L = یک بیم (مقدار بر داشت بدون شکست) رابطه مستقیم دارد، مشترکاً با عرض (w) و مربع ارتفاع (h) و معکوساً متناسب است به طول (L) بیم. اگر عرض و ارتفاع همین بیم در چندان شود، اما طول آن نصف گردد تاثیر آن بالای مقاوتم (L) بیم چه خواهد بود؟ شکل (9-2) (b).

16. برای وتر PQ در یک نقطه ثابت A در داخل یک دایره، طول PA معکوساً متناسب است به طول AQ. اگر طول AQ باشد، طول PA = 16 باشد.

\[251 \]
طول قدر خواهد بود ، هنگامی که $PA = 4$ باشد.

شکل (9-2).a.

(تراویلم افقی) : مسافت دیدافت (ردافت)، هر شخص تناسب مستقیم دارد به مربع ارتفاع یی از سطح بحر. اگر یک نفر 19.5 متر از سطح بحر ارتفاع داشته باشد ، فاصله 28.97 کیلومتر را دیده می‌تواند . ارتفاع این شخص از سطح بحر قدر خواهد بود ، در صورتی فاصله 54.32km را دیده بتواند.

17- (مقاومت برقی) : در یک درجه ثابت حرارت و ترکیب کیمیایی ثابت مساوی سیم رابطه مستقیم دارد بهطور سیم و معکوساً متناسب است به مریخ قطر سیم . اگر مقاومت یک نوع سیم 0.112 اوم باشد رقتیکه قطر آن 0.254

462
سانتیمتر، و طول آن 15.24 متر باشد. مقاومت همین سیم را معلوم کنید. تا گذشته طول آن 608.7 متر و قطر آن 0.478 سانتیمتر باشد؟

\[\text{(مساحت مربع)}: \text{مساحت مستقیماً متناسب است به مربع یک ضلع آن اگر یک مربع دارای 168.54 متر مربع مساحت بوده و طول ضلع آن 10.2 متر باشد.}

\[\text{(شدت نور)}: \text{شدت نور (} L \text{) یک چراغ برق (} L \text{) است، وقتمکه فاصله} \]

\[L = 9 \text{ w/m} \text{ از چراغ دارد. فرضیاً به مربع فاصله (d)} \]

\[5 \text{ متر باشد. شدت نور را در فاصله 10 متر معلوم کنید.}

\[\text{تناسب مستقیم به} R \text{ و تناسب معکوس به} I \text{ دارد. اگر 300} = I \text{ باشد.}

\[R \text{ را معلوم کنید.}

\[\text{(حجم گاز)}: \text{حجم (} V \text{) یک کلیه غاز تناسب مستقیم دارد به درجه}

\[V = 231 \text{ cm}^3 \text{ (} P \text{) و تناسب معکوس دارد، به فشار (} P \text{) می‌شود.}

\[T = 42 \text{ کوش.}

\[p = 15 \text{ kg/cm}^2 \text{, } T = 30 \text{ حرجم گاز را دریافت کنید اگر } P = 20\text{kg/cm}^2 \text{ باشند.}

\[q \text{ تشان بدید، اگر} P \text{ رابطه مستقیم دارد به } q . \text{ پس } q \text{ همچنان رابطه مستقیم به } p \text{ دارد.}

\[q \text{ تشان بدید، اگر} U \text{ معکوساً متناسب به } V \text{ باشد ، پس } V \text{ همچنان U معکوس با } V \text{ دارد ، و تناسب مستقیم به } V \text{ تناسب معکوس با } U \text{ دارد.}

\[\text{مساحت دایره تناسب مستقیم دارد به مربع قطر آن. ضرب تا معادله}

\[\text{این در متحول مقدار است؟}

\[\text{تناسب مستقیم به مربع (} t \text{) وقت دارد. پس (} t \text{) به } P \text{ چه ارتباط دارد.}

252
سوالات ذیل را ذریعه کلکولیتر با استناد رابطه فوق حل کنید:
الف: نفوس یک شهر 744,624 و از شهر دوم 452,524 میباشد.
فاصله بین این دو شهر 174 کیلومتر است. اوسط مخابره تلفنی کردن بین دو شهر
11,153 است. قیمت k را معلوم کرده، معادله متحول ها را تحریر کنید.
ب: نفوس یک شهر، که از شهر دیگری 446 کیلومتر فاصله دارد، 1,511,482.
نفر است. اوسط تعداد مخابره تلفنی روزانه بین این دو شهر را معلوم نمائید.
ج: اوسط تعداد مخابره تلفنی روزانه بین دو شهر 4,270 است. نفوس یک شهر
7,895,563 است. فاصله را بین هر دو شهر دریافت کنید.

\[
N = \frac{kP_1P_2}{D^2}
\]

\[
P_1 = \text{نفوس یک شهر}
\]

\[
P_2 = \text{نفوس دوم شهر}
\]

\[
D = \text{فاصله بین هر دو شهر}
\]

\[
N = \text{تعداد مخابره تلفن‌های}
\]

27- (مادل جاذبه در جامعه شناسی) : به اساس تجربه واضح گردیده که
اوستین تعداد مخابره تلفنی کردن در یک روز بین شهر، مستقیماً
متغیر است به نفوس هر دو شهر و معکوساً متغیر است به مربع فاصله
بین دو شهر یعنی:
این تئوری را بنام * مادل جاذبه * مینامند. زیرا که با تئوری جاذبه
* نیوتن " مشابهت دارد .
کار برد سیمبول‌های کمیت‌ها

دریان قسمت، میخواهیم سیمبول‌های ابعاد را تحلیل نماییم. مهارت های علمی که
ما در دروس گذشته تکرار شود، در تحلیل ابعاد در خور ارزش است و مورد استفاده
می‌باشد. در جدول (10-2) مخفف‌های سیمبول‌های ابعاد نشان داده شده است.

جدول 10-2

<table>
<thead>
<tr>
<th>Dimension symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter (0.01 m)</td>
</tr>
<tr>
<td>km</td>
<td>kilometer (1000 m)</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>cg</td>
<td>centigram (0.01 g)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram (1000 g)</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>h, hr</td>
<td>hour</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter (0.001 L)</td>
</tr>
</tbody>
</table>

سرعت: سرعت از طریق تقسیم مسافت بر زمان بدست می‌آید. (این سرعت
اوسط است)

فاصله \(d \)

\[V = \frac{d}{t} = \text{سرعت اوسط} \]

وقت \(t \)

فاصله \(d \) \(\rightarrow \)

وقت \(t \) \(\rightarrow \)

سرعت اوسط \(\rightarrow V \)

255
مثال: اگر فاصله طی شده به کیلومتر و زمان سفر به ساعت باشد، سرعت به واحد کیلومتر در ساعت (Km/hr) ارائه می‌گردد.

مثال: یک موتور در ظرف دو ساعت به اندمازه 100 کیلومتر را طی کرده، سرعت او اوسط آن عبارت است از:

\[
\frac{100\text{km}}{2\text{h}} = 50 \frac{\text{km}}{\text{h}}
\]

سیمبول‌های ابعاد:
سیمبول (100km / 2h)، چنین مفهوم دارد که: 100km را به (2h) تقسیم نماییم. مایوسی و 100 را به 2 تقسیم نماییم، همچنین میزان کیلومتر سیمبول‌های کیلومتر، ساعت، ثانیه و پوند را به‌صورت اعداد معامله نماییم.

مثال: این دو عملیق را مقایسه کنید:

\[
\frac{100x}{2y} = \frac{100}{2} \times \frac{x}{y} = 50
\]

به همراه

\[
\frac{100\text{km}}{2\text{h}} = \frac{100}{2} \times \frac{\text{km}}{\text{h}} = 50
\]

مثال دیگر:

اول: مقایسه کنید.

\[
3\text{ft} + 2\text{ft} = (3 + 2) \text{ft} = 5\text{ft}
\]

\[
3x + 2x = (3 + 2) x = 5x
\]
دوم: مقایسه نمایید.

\[4m \times 3m = 3 \times 4 \times m \times m = 12m^2\]

\[4x \times 3x = 3 \times 4 \times x \times x = 12x^2\]

به همراه......

سوم: مقایسه نمایید:

نفر ساعت 40 = نفر ساعت 8 = ساعت 8 (نفر 5)

\[5x \times 8y = 5 \times 8 \times x \times y = 40xy\]

تمرین:

سرعت را به متر در ثانیه معلوم کنید:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>t</td>
</tr>
<tr>
<td>1.</td>
<td>186,000 m.</td>
</tr>
<tr>
<td>2.</td>
<td>8 m.</td>
</tr>
</tbody>
</table>

تمرین: این اندازه گیری ها را جمع کنید:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>45 ft, 17 ft</td>
</tr>
<tr>
<td>4.</td>
<td>[\frac{3}{4}, \frac{2}{5}] kg</td>
</tr>
</tbody>
</table>
در هر کدام از مثال‌های فوق ملاحظه نمودیم، که سیمبول‌های کیفیت‌ها بقسم متحول‌ها یا اعداد در معادلات معامله می‌شوند.
به این معنی است که $3 \text{ m} X 3 \text{ km/h}$ مثال 3 m به این معنی است که 3 km/h تقسیم به 3 m

تمرین:*

این محاسبات را اجرا کنید. بعداً ساده نمائید (واحدها را تغییر ندهید).

<table>
<thead>
<tr>
<th>کلمه</th>
<th>عدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1yd</td>
<td>36ft X 3ft</td>
</tr>
<tr>
<td>16 oz</td>
<td>5Lb X 1 Lb</td>
</tr>
<tr>
<td>4kg X 7ft</td>
<td>5 in X 9 lb/hr</td>
</tr>
<tr>
<td>5ft X 8kg</td>
<td>4 hr</td>
</tr>
<tr>
<td>10 lb X 14 lb</td>
<td></td>
</tr>
<tr>
<td>7m X 5m</td>
<td></td>
</tr>
</tbody>
</table>

تبدیل واحد ها:

جهت تبدیل کردن واحد ها، در طریقه موجود است:

اول: تبدیل واحد به اساس تمعین

مثال:

25 yd را به انج تبدیل نمائید.

$25 \text{ yd} = 25 \times 1 \text{ yd} = 25 \times 3 \text{ ft}$

$25 \text{ yd} = 25 \times 1 \text{ yd} = 25 \times 3 \text{ ft}$
طبقه قبل شهر تبدیل واحد ها (یک ضرب به یک) که از دیگر طریقه‌ها
ترجیح داده می‌شود و در ذیل تشریح گردیده است.
7.2 انج را به پایه تبدیل کنید.

7.2 " =====> yd .

\[
\frac{1 \text{ ft}}{12 \text{ in}} \times \frac{1 \text{ yd}}{3 \text{ ft}} \times 7.2 \text{ in} = 0.2 \text{ yd}
\]

تمرین: تبدیل واحد های ذیل را اجرا نمایید.

11. 34yd ---> in .
12. 11mi ---> ft .

13. 5 hr . ---> sec .
14. 720 in ---> yd .

15. 36,960m ---> km
16. 360,000sec ---> hr .
مثال:

60 كيلو متر في ساعة را به متر في ثانيه تبديل ناميد.

\[
\frac{60 \text{ km}}{1 \text{ h}} = 60 \frac{\text{ km}}{1 \text{ h}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ sec}}
\]

\[
= \frac{60 \times 1000}{60 \times 60} \frac{\text{ km}}{\text{ sec}} = \frac{\text{ km}}{\text{ min}} \times \frac{\text{ h}}{\text{ min}} = \frac{\text{ km}}{\text{ sec}}
\]

\[
= 16.67 \frac{\text{ m}}{\text{ sec}} = 16.67 \text{ m/s}
\]

مثال: 55 ميل في ساعة را به فت في ثانيه تبديل کند.

\[
\frac{55 \text{ mi}}{1 \text{ hr}} = 55 \frac{\text{ mi}}{1 \text{ hr}} \times \frac{5280 \text{ ft}}{1 \text{ mi}} \times \frac{1 \text{ hr}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ sec}}
\]

\[
= \frac{55 \times 5280}{60 \times 60} \frac{\text{ mi}}{\text{ sec}} = \frac{\text{ mi}}{\text{ h}} \times \frac{\text{ h}}{\text{ min}} \times \frac{\text{ min}}{\text{ sec}} = 80 \frac{2}{3} \text{ ft}
\]

تمرين: از یک واحد فیزیکی به دیگر واحد فیزیکی تبديل کنید.

17. \[\frac{120 \text{ mi}}{1 \text{ hr}}, \rightarrow \frac{\text{ ft}}{\text{ sec}}\]

18. \[\frac{2 \text{ m}}{3600 \text{ cm}}, \rightarrow \frac{\text{ m}}{\text{ cm}}\]

19. \[\frac{50 \text{ kg}}{1 \text{ L}}, \rightarrow \frac{\text{ g}}{1 \text{ cm}^3}\]

20. \[\frac{\text{ $72}}{1 \text{ day}}, \rightarrow \frac{\text{ $}}{1 \text{ hr}}\]

\(1 \text{ L} = 1000 \text{ cm}^3\)
این محاسبات را بدون تغییر واحد در صورت امکان ساده سازید.

1. \(36 \text{ ft} \times \frac{1 \text{ yd}}{3 \text{ ft}} \)
2. \(6 \text{ lb} \times \frac{16 \text{ oz}}{1 \text{ Lb}} \)

3. \(6 \text{ kg} \times \frac{8 \text{ hr}}{\text{ kg}} \)
4. \(9 \text{ km} \times \frac{1 \text{ h}}{\text{ km}} \)

5. \(3 \text{ cm} \times \frac{2 \text{ g}}{2 \text{ cm}} \)
6. \(9 \text{ km} \times \frac{1 \text{ days}}{6 \text{ days}} \times \frac{3 \text{ days}}{1 \text{ day}} \)

7. \(6 \text{ m} + 2 \text{ m} \)
8. \(10 \text{ tons} + 6 \text{ tons} \)

9. \(5 \text{ ft} + 7 \text{ ft} \)
10. \(10 \text{ yd} + 17 \text{ yd} \)

11. \(\frac{3 \text{ kg}}{5 \text{ m}} \times \frac{7 \text{ kg}}{6 \text{ m}} \)
12. \(3 \text{ acres} \times \frac{1 \text{ acre}}{60} \)

13. \(2000 \text{ lb} \times \frac{6 \text{ mi}}{1 \text{ hr}^2} \times \frac{100 \text{ ft}}{\text{ lb}} \)
14. \(7 \text{ m} \times \frac{8 \text{ kg}}{\text{ sec}} \times \frac{4 \text{ sec}}{1 \text{ sec}} \)

15. \(\frac{6 \text{ cm}^2 \times 5 \text{ cm}}{2 \text{ sec} \times 2(1/\text{ kg})} \)
16. \(\frac{320 \text{ lb} \times (5 \text{ ft})^2}{2 \text{ sec} \times 2(1/\text{ sec}^2)} \)

تمرین:

واحد های ذیل را به روشی یا به ترتیب زیر، به یک تبدیل نمائید:

\(1 \text{ ft}^2 \)
17. 72 in, \Rightarrow ft
18. 17 hr, \Rightarrow min

19. 2 روز \Rightarrow sec
20. 360 sec, \Rightarrow hr.

21. $\frac{60}{m}$ \Rightarrow g/cm
22. $\frac{44}{sec}$ \Rightarrow mi/hr

23. $\frac{2}{166}$ \Rightarrow cm
24. $\frac{60}{ft^3}$ \Rightarrow ton/yd³

25. $\frac{36}{hr}$ \Rightarrow
26. نفر روز \Rightarrow نفر ساعت 1440

27. $\frac{mL}{sec}$ \Rightarrow $\frac{L}{hr}$
28. $\frac{1800}{L}$ \Rightarrow $\frac{cg}{mL}$

29. 186,000 (سرعت نور) \Rightarrow $\frac{mi}{sec}$ \Rightarrow $\frac{mi}{yr}$

30. $\frac{1100}{sec}$ \Rightarrow $\frac{mi}{yr}$

31. $\frac{89.2}{sec}$ \Rightarrow m/min
32. $\frac{1013}{yd}$ \Rightarrow m
33. $2 \text{ mi}^2 \iff 2 \text{ km}^2$

34. $\frac{312.2 \text{ kg}}{\text{ m}} \iff \text{ lb/ft}$

35. اگر وزن یک میله فولادی به (طول = 2 cm) و 5g باشد. وزن همین نوع میله فولادی چند خواهد بود؟ در صورتی که طول آن 5m اندازه شود؟ (الف) 3 cm (ب) 10 cm

36. در تمرین 35 طول میله چند خواهد بود؟ اگر وزن میله 4.3 cm و وزن میله 20 cm باشد؟

در کیمیا، یک مول مولی همان سی از آن که است به گرام به مساوی است به وزن مولاری همان شی. بطور مثال: یک مول اکسیژن، 32 گرم است. زیرا وزن مولاری آن 32 است. یک مول نیون 20.2 گرم است.

- به گرام تبدیل نمایید:

37. مول اکسیژن 50

38. مول نیون 44

- به مول تبدیل کنید:

39. گرام اکسیژن 303

40. گرام نیون 377.7

41. معادله نسبی اینشتین: بیان میکند که: $E = mc^2$

Mقدار انرژی است که از یک (m) تولید و c، سرعت نور است. یک بمب اتمی منفجر می‌شود که شامل 5000gr پورانیم رادیواکتیو می‌باشد.

سرعت نور 10\text{ x 2.9979} \text{ m/s} = 29.979 \text{ m/s}.

Mقدار انرژی را که از انفجار این بمب بوجود می‌آید: معلوم نکنید.
کثافت مایع بسته از کننده تقسیم بر حجم (D=m/v) دارد.

اگر نسبت 18 cm³ یک مایع چند خواهد بود.

1 cm³ = 1 mL

شکل اینجا

یک طیاره، عملیات میخواهد که مقدار تعداد مشترک مایع و مواد پذیرفته را برای یکی تعداد میکس جابه‌جایی که در قله یک کوه عملیات میکند، بررسی می‌کند. اکر سرعت

طیاره مخصوص به مسیر افتی مسیاری به (69 m/sec) می‌تواند به بخش شما در یافتن کنید که مواد ضرورت

یک طیاره از قله کوه (400 m) باشد نشان می‌دهد که مواد ضرورت

به کدام فاصله دور تر از طیاره از اینجا رها شود.

\[h = \frac{1}{2} gt^2 \]

\[t = \sqrt{\frac{2h}{g}} \]

\[t = \sqrt{\left(\frac{2}{9.80} \right) (200)} = 6.39 \text{ sec} \]

شکل اینجا
وقتي‌که مواد برمی‌خوره میرسد،
از طرف دیگر سرعت مساوی است
\[
V = \frac{d}{t} = \frac{x}{t} = \frac{\text{6} \times 69 \times (\text{6.39})}{60} = 400 \text{ m}
\]
مواد باید به فاصله 400 متر درر از طیاره رها شود.
\[
\text{و 44-} \quad \text{ید توب به سرعت} \quad 60 \text{ m/sec} \quad \text{مرمی را فیر میکند.} \quad \text{زاییه فیر این توب را}
\]
در صورت دریافت کنید که به فاصله 420 m در تر هدف را زده بتواند.
\[
R = \frac{2V^2}{g} \sin 2\theta \quad \text{صفر مساحت}
\]
\[
\sin 2\theta = \frac{\text{320, 9.8}}{(60)} = 0.871
\]
\[
\text{Sin} 2\theta = 0.871 \quad \Rightarrow \quad 2\theta = 60.6 \quad \Rightarrow \quad \theta = 30.3
\]
\[
\text{45-} \quad \text{ید ریل 100 متر طول دارد، و به سرعت} \quad 200 \text{ m/sec} \quad \text{در حرکت است.}
\]
\[
\text{ید نفر که در نقطه اول ریل موقعیت دارد میخواهد که ید نفر دیگر که}
\]
در حضی صبح ریل چوکی گرفته آنرا به ضرب کلوه از پا در آورد.
اگر فیر
\[
\text{مرمی تفنگ نفر درم مساوی به سرعت ریل باشند شما در پات کنید که:}
\]
الف: آیا این نفر پیش‌اند نفر اول را پزند.

265
ب: نشان دهنده را به چند متری فاصله عیار بسازد تا هدف را بصرت درست کرته بتواند.

\[V = 200 \text{ m/sec} \]

\[V = V_1 + V_2 = 200 + 200 = 400 \text{ m/sec} \]

سرعت ریل: 200 m/sec

سرعت مرمی: 400 m/sec

اصطلاح: فاصله

\[x = \frac{t}{2} \]

وقت

مراحل انجام شده با شکسته شدن در طرف دیگر، فاصله به مرمت‌هایی به هدف می‌خورند که فاصله طی شده توسط هدف و مرمت‌یکسان، باشد.

\[x = 400 t \]

\[x = 200 t + 100 \]

به این ترتیب

\[400 t = 200 t + 100 \]

به همین

226
ب ۴۰۰ (۱/۲) = ۲۰۰ m = x، x = ۲۰۰ m

نه فاصله ۲۰۰ هدف را می‌زنند. (نت نت‌‌گیری می‌باشد ۲۰۰ عیار نورد)

\[
t = \frac{100}{200} = \frac{1}{2} \text{ sec}.
\]

\[
200 t = 100
\]

\[
x = 400 \times \frac{1}{2} = 200 m
\]

با سلام!

"ب بیا کنم، هر رسم انسان.. " کاربر

Dec. 1, 1991

277
ضمیمه ها

موضوع

صفحه

اول : فرمولها و مطالب های مثلثاتی 272

دوم : الف - معلومات ساینسی 273

ب - معلومات ساینسی 274

سوم : فرمول ها و مطالب های عمومی الجبر 275

چهارم : واحدات فیزیکی 276

پنجم : معلومات ساینس عمومی 277

بند : جوابات سوالات و تمرین ها 278

268
رنهماي حل تمرین های کورس الگبر

(مبادی الگبر)

این رهنا طرق حل و جوابات تمام سوالات پرپلهم را و تمرین هایی که در کتاب
مباحث الگبر شامل می‌باشند، بسترس شاگردان محترم این کورس بوجه احسن تقدیم
می‌دارد. در تهیه این رهنا (سؤالاتی) سعی بخرج داده شده است تا تمام مراحل ضروری
سوالات عبارتی و تمرین ها، جهت سهولت کار حاصل عمل (آموزش حکی شاگردان) بوجه
آسانتر نشان داده شود.

مؤلف، نظر به تجربه چندین ساله در تدریس مضامین ساینسی و انگریزی، عقیده
راسخ دارد که در کتاب ساینسی و تخصصی جوابات تمرینات و سوالات بسترس شاگردان
گذاشته شوند. اشکال شدن جوابات تمرین ها، شاگرد را بپیچتر تش老字号 مینماید تا با
جدوهدزیاد، تمرین را حل نموده و خود را به هدف که عبارات از جواب تمرین است
برساند. تهیه جوابات از یک طرف مدرس (علم) را کمک می‌کند و از طرف دیگر به شاگرد
زیمنه تشوقی و ترغیب بیشتر حاصل می‌گردد که جواب (هدف) پرپلهم را بدست بیاورد.
داشتن جوابات تمرین ها، منفی یا مثبت، مفهوم "متفکر، بخود بودن" (Self Actualization)
تشقیه می‌نماید.

علما تعلیم و تربیه به این عقیده می‌باشد که شاگردان در پروسه آموزش به کمک و
رهنمندی اعجاب و آنی پیچتش ضرورت دارد. زیرا شاگرد در اثنا تدریس درس جدید با
معلومات جدید و تازه روبرو می‌شود، در این اثنا اکر کمک آنی و عالج به شاگرد مهیا
نگرد، شاگرد خود را عاجز می‌بیند که این معضله در منصه تکمیل، خود شاگرد را از
یاد کرتن بزاداشته، و گاهی هم اتفاق می‌افتد که شاگرد در مقابل این مضمون خود، کامل نشان داده، حتی عقیده بگیرد که مطالعه مضمون ساینسی‌ها بهتر کرک بگیرد. زیرا وقتی یکچگون خود را در اجرا، و انجام یک مسئولیت عاجز احساس نماید، این وضعیت شاگرد را مایوس و دلسزد می‌سازد که تنها به شکر و ترک برگرداید.

از جانب دیگر گنجینه‌ای جوابات تمرین‌ها در کتاب ساینس و انجیری یک مدرس بسیار مؤثر می‌باشد که شاگردان را به مطالعه و جستجوی تالش های شخصی بپیش آوری. پیشنهاد کردن اصول تدریس خوب تر برای یک کورس کاری است، بشمارند. اصول تدریس و طریقه پروسه آموزش برای هر صنف مختلف می‌باشد. پس پیشنهاد می‌شود که هر استاد با در نظر داشتن تیوری‌های تعلیم و تربیه و طبقه‌بندی کل‌کات مشخص اهداف که از طرف عالم مشهور تعلیم و تربیه (Bloom) پیشنهاد کرده، اصول تدریس مشخص را در کار خود استفاده قرار بدهد.

هر مدرس (علم‌پرداز) باید در تدریس خویش آن چیزی که اصول تدریس را اتخاذ نموده اندکاف بدهد که در نهایت ارزیابی بپیش آوری موفق ثابت گردد. با وصف این همه معلومات تیوری‌های آموزش، عوامل ذیل را پیشنهاد می‌نماید که مدرسین (علم‌پرداز) آنها در اثبات تدریس در نظر گرفته باشند.

۱- پروسه آموزش وقتی بسیار مؤثر واقع می‌شود که شاگرد در پروسه تدریس (آموزش) نقش او به‌گیرد.

۲- بالای پروسه آموزش، تجارب ذهنیت (عادت‌ها) و ارزش‌های سابقه شاگرد تاثیر مستقیم دارد. (موضوع تدریس باید با تجارب و سویه گذشته شاگرد تسهیل داشته باشد).

۳- پروسه آموزش وقتی بسیار مؤثر و مفید واقع می‌شود که خود آموزشی (شاگرد) آموزش‌های رشته علی‌الا به که این مسئولیت بسیار مهم و مفید برای خود قبول نماید.

۴- در بوجود آوردن حال مؤثر پروسه آموزش، شناخت، تشخیص و تهیه کردن تام
سهولت های لازم در جهت برآوردن مرام شاگرد امریست حتی الازم درسی، و سهولت های آموزش.

هـ آموزش وقتی بسیار مؤثر می‌باشد که به آموزنده شاگرد اجازه داده شود تا در یک محیط فاقد ترس و خطر کار و عمل نماید. چه در زمینه آزمایشی یا آزمایش‌های اصلی.
ضیمه اول: فرمول‌ها و متعلقه‌های مثلثاتی

tوابع مثلثاتی

\[
\sin \theta = \frac{o}{h} \quad \csc \theta = \frac{1}{\sin \theta} = \frac{h}{o}
\]
\[
\cos \theta = \frac{a}{h} \quad \sec \theta = \frac{1}{\cos \theta} = \frac{h}{a}
\]
\[
\tan \theta = \frac{o}{a} = \frac{\sin \theta}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta} = \frac{a}{o}
\]
\[
a^2 + o^2 = h^2
\]

قضیه فیتاگورس

مطابقه‌ای مثلثاتی

\[
\sin^2 \theta + \cos^2 \theta = 1 \quad \sec^2 \theta - \tan^2 \theta = 1 \quad \csc^2 \theta - \cot^2 \theta = 1
\]
\[
\sin 2\theta = 2 \sin \theta \cos \theta
\]
\[
\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta
\]
\[
\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}
\]
\[
\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B
\]
\[
\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B
\]
\[
\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\]
\[
\sin \frac{1}{2}\theta = \sqrt{\frac{1 - \cos \theta}{2}} \quad \cos \frac{1}{2}\theta = \sqrt{\frac{1 + \cos \theta}{2}} \quad \tan \frac{1}{2}\theta = \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}
\]
\[
\sin A \pm \sin B = 2 \sin \left(\frac{A \pm B}{2}\right) \cos \left(\frac{A \mp B}{2}\right)
\]
ضیمه دوم: اف: معلومات ساینسی

شکل دیل حالت پرتاب سفینه فضایی رانشان می‌دهد
دوران اولیه ان به‌سرپیچی و بعدی ان دایره‌ای می‌گردد

مساحت‌ها و حجم‌ها:

<table>
<thead>
<tr>
<th>شی</th>
<th>مساحت سطحی</th>
<th>حجم</th>
</tr>
</thead>
<tbody>
<tr>
<td>دایره به شعاع (r)</td>
<td>πr^2</td>
<td>$\frac{4}{3} \pi r^3$</td>
</tr>
<tr>
<td>کره به شعاع (r)</td>
<td>$4 \pi r^2$</td>
<td></td>
</tr>
<tr>
<td>استوانه به شعاع (r) و ارتفاع h</td>
<td>$2\pi r^2 + 2\pi rh$</td>
<td>πr^2h</td>
</tr>
</tbody>
</table>
قانون اول کیپلر

(1) افتتاب دریکی از مراکز بیضوی نظر به سیاره‌های همسایگی خور

(2) روش در موقعیت‌های مختلف سیاره‌ها ول چهار نظر با افتتاب

مواد ساینی

(3) معلومات (اما که بیشتر برمی‌گردد) سوم کیپلر تطبيق می‌شود

جدول ذیل معلومات ساینی در مورد (9) سیاره‌های از اول تا دهم

<table>
<thead>
<tr>
<th>سیاره</th>
<th>از فاصله از زمین (10^6 km)</th>
<th>برابر بود (T)</th>
<th>سیالی (km^3/yr^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عطارد</td>
<td>57.9</td>
<td>0.24</td>
<td>3.34</td>
</tr>
<tr>
<td>زهره</td>
<td>108.2</td>
<td>0.615</td>
<td>3.35</td>
</tr>
<tr>
<td>زمین</td>
<td>149.6</td>
<td>1.0</td>
<td>3.35</td>
</tr>
<tr>
<td>مریخ</td>
<td>277.9</td>
<td>1.88</td>
<td>3.35</td>
</tr>
<tr>
<td>جوییتر</td>
<td>778.3</td>
<td>11.86</td>
<td>3.34</td>
</tr>
<tr>
<td>سیاره‌های ساطور</td>
<td>1427</td>
<td>29.5</td>
<td>3.34</td>
</tr>
<tr>
<td>زورانوس</td>
<td>2870</td>
<td>84.0</td>
<td>3.34</td>
</tr>
<tr>
<td>نیپتون</td>
<td>4497</td>
<td>165</td>
<td>3.33</td>
</tr>
<tr>
<td>پلتو</td>
<td>5900</td>
<td>248</td>
<td></td>
</tr>
</tbody>
</table>
فرض مولحل معادله درجه دوم (فرض مول محمد بن موسی)

\[ax^2 + bx + c = 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

انکشاف بهای نومیل

\[(1 + x)^n = 1 + nx + \frac{n(n - 1)}{2!} x^2 + \frac{n(n - 1)(n - 2)}{3!} x^3 + \cdots \]

\[(x + y)^n = x^n \left(1 + \frac{y}{x} \right)^n = x^n \left[1 + n \frac{y}{x} + \frac{n(n - 1) y^2}{2!} \frac{x}{x^2} + \cdots \right] \]

انکشافهای دیگر ریاضیات

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \]

\[\ln (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \]

\[\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots \]

\[\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots \]

\[\tan \theta = \theta + \frac{\theta^3}{3} + \frac{2 \theta^5}{15} + \cdots \quad |\theta| < \frac{\pi}{2} \]

\[f(x) = f(0) + \left(\frac{df}{dx} \right)_0 x + \left(\frac{d^2f}{dx^2} \right)_0 \frac{x^2}{2!} + \cdots \]
Length

1 in = 2.54 cm
1 cm = 0.394 in
1 ft = 30.5 cm
1 m = 39.4 in = 3.28 ft
1 km = 5280 ft = 1.61 mi
1 km = 0.621 mi
1 nautical mile = 6080 ft = 1.85 km
1 fermi = 1 femtometer (fm) = 10^{-15} m
1 angstrom (Å) = 10^{-10} m
1 light-year = 9.46 × 10^{15} m
1 parsec = 3.26 light-years

Time

1 day = 8.64 × 10^4 s
1 year = 3.156 × 10^7 s

Speed

1 mi/h = 1.47 ft/s = 1.61 km/h = 0.447 m/s
1 km/h = 0.278 m/s = 0.621 mi/h
1 ft/s = 0.305 m/s = 0.682 mi/h
1 m/s = 3.62 ft/s = 3.60 km/h
1 knot = 1.151 m/h = 0.5144 m/s

Angle

1 radian (rad) = 57.30° = 57°18′
1° = 0.01745 rad
1 rev/min (rpm) = 0.0174 rad/s

SI Derived Units and Their Abbreviations

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>Energy and work</td>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>Electric charge</td>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>Electric potential</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>Capacitance</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>tesla</td>
<td>T</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>weber</td>
<td>Wb</td>
</tr>
<tr>
<td>Inductance</td>
<td>henry</td>
<td>H</td>
</tr>
</tbody>
</table>

In terms of base units:

\[1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 \]

Metric (SI) Multipliers

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Abbreviation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tera</td>
<td>T</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td>10^9</td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td>10^6</td>
</tr>
<tr>
<td>Kilo</td>
<td>k</td>
<td>10^3</td>
</tr>
<tr>
<td>Hecto</td>
<td>h</td>
<td>10^2</td>
</tr>
<tr>
<td>Deka</td>
<td>da</td>
<td>10^1</td>
</tr>
<tr>
<td>Deci</td>
<td>d</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>Centi</td>
<td>c</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Micro</td>
<td>μ</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>Pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>Femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>

\[1 \text{ kg} = \text{ kilogram (mass)}, \text{ m} = \text{ meter (length)}, \text{ s} = \text{ second (time)}, \text{ A} = \text{ ampere (electric current)}. \]
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Approximate value</th>
<th>Current best value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in vacuum</td>
<td>c</td>
<td>3.00×10^8 m/s</td>
<td>2.99792458×10^8 m/s</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G</td>
<td>6.67×10^{-11} N\cdot m^2/kg^2</td>
<td>$6.67259(85) \times 10^{-11}$ N\cdot m^2/kg^2</td>
</tr>
<tr>
<td>Avogadro's number</td>
<td>N_A</td>
<td>6.02×10^{23} mol^{-1}</td>
<td>$6.0221367(36) \times 10^{23}$ mol^{-1}</td>
</tr>
<tr>
<td>Gas constant</td>
<td>R</td>
<td>8.315 J/mol\cdot K = 1.99 cal/mol\cdot K</td>
<td>$3.14510(70)$ J/mol\cdot K</td>
</tr>
<tr>
<td>Boltzmann's constant</td>
<td>k</td>
<td>1.38×10^{-23} J/K</td>
<td>$3.80658(12) \times 10^{-23}$ J/K</td>
</tr>
<tr>
<td>Charge on electron</td>
<td>e</td>
<td>1.60×10^{-19} C</td>
<td>$60217733(49) \times 10^{-19}$ C</td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>σ</td>
<td>5.67×10^{-8} W/m\cdot K^4</td>
<td>$67051(19) \times 10^{-8}$ W/m\cdot K^4</td>
</tr>
<tr>
<td>Permeability of free space</td>
<td>μ_0</td>
<td>$4\pi \times 10^{-7}$ T\cdot m/A</td>
<td>$8.54187817 \ldots \times 10^{-12}$ C^2/N\cdot m^2</td>
</tr>
<tr>
<td>Permittivity of free space</td>
<td>ε_0</td>
<td>$(1/c^2)\varepsilon_0$</td>
<td>8.85×10^{-12} C^2/N\cdot m^2</td>
</tr>
<tr>
<td>Planck's constant</td>
<td>h</td>
<td>6.63×10^{-34} J\cdot s</td>
<td>$6260755(40) \times 10^{-34}$ J\cdot s</td>
</tr>
<tr>
<td>Electron rest mass</td>
<td>m_e</td>
<td>9.11×10^{-31} kg = 0.0000549 u</td>
<td>$1093897(54) \times 10^{-31}$ kg</td>
</tr>
<tr>
<td>Proton rest mass</td>
<td>m_p</td>
<td>1.6726×10^{-27} kg = 1.00728 u</td>
<td>$5.48579903(13) \times 10^{-4}$ u</td>
</tr>
<tr>
<td>Neutron rest mass</td>
<td>m_n</td>
<td>1.6750×10^{-27} kg = 1.008665 u</td>
<td>$1.007276470(12)$ u</td>
</tr>
<tr>
<td>Atomic mass unit (1 u)</td>
<td></td>
<td>1.6605×10^{-27} kg = 931.5 MeV/c^2</td>
<td>$5749286(10) \times 10^{-27}$ kg</td>
</tr>
</tbody>
</table>

Values of Some Numbers

| π = 3.1415927 | $\sqrt{2}$ = 1.4142136 | $\ln 2$ = 0.6931472 | $\log_{10} e$ = 0.4342945 |
| e = 2.7182818 | $\sqrt{3}$ = 1.7320508 | $\ln 10$ = 2.3025851 | 1 rad = 57.2957795 |

Mathematical Signs and Symbols

<table>
<thead>
<tr>
<th>Sign</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\propto</td>
<td>is proportional to</td>
</tr>
<tr>
<td>\approx</td>
<td>is equal to</td>
</tr>
<tr>
<td>\equiv</td>
<td>is approximately equal to</td>
</tr>
<tr>
<td>$\not=$</td>
<td>is not equal to</td>
</tr>
<tr>
<td>$>$</td>
<td>is greater than</td>
</tr>
<tr>
<td>\geq</td>
<td>is greater than or equal to</td>
</tr>
<tr>
<td>\sum</td>
<td>sum of</td>
</tr>
<tr>
<td>\overline{x}</td>
<td>average value of x</td>
</tr>
<tr>
<td>Δx</td>
<td>change in x</td>
</tr>
<tr>
<td>$\Delta x \rightarrow 0$</td>
<td>Δx approaches zero</td>
</tr>
<tr>
<td>\ll</td>
<td>is less than or equal to</td>
</tr>
<tr>
<td>\gg</td>
<td>is greater than or equal to</td>
</tr>
<tr>
<td>$n!$</td>
<td>$n(n-1)(n-2)\ldots(1)$</td>
</tr>
</tbody>
</table>
The Greek Alphabet

<table>
<thead>
<tr>
<th>Alpha</th>
<th>Α</th>
<th>α</th>
<th>Nu</th>
<th>Ν</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>Β</td>
<td>β</td>
<td>Xi</td>
<td>Ξ</td>
<td>ξ</td>
</tr>
<tr>
<td>Gamma</td>
<td>Γ</td>
<td>γ</td>
<td>Omicron</td>
<td>Ω</td>
<td>ο</td>
</tr>
<tr>
<td>Delta</td>
<td>Δ</td>
<td>δ</td>
<td>Pi</td>
<td>Π</td>
<td>π</td>
</tr>
<tr>
<td>Epsilon</td>
<td>Ε</td>
<td>ε</td>
<td>Rho</td>
<td>Ρ</td>
<td>ρ</td>
</tr>
<tr>
<td>Zeta</td>
<td>Ζ</td>
<td>ζ</td>
<td>Sigma</td>
<td>Σ</td>
<td>σ</td>
</tr>
<tr>
<td>Eta</td>
<td>Η</td>
<td>η</td>
<td>Tau</td>
<td>Τ</td>
<td>τ</td>
</tr>
<tr>
<td>Theta</td>
<td>Θ</td>
<td>θ</td>
<td>Upsilon</td>
<td>Υ</td>
<td>υ</td>
</tr>
<tr>
<td>Iota</td>
<td>Ι</td>
<td>ι</td>
<td>Phi</td>
<td>Φ</td>
<td>ϕ</td>
</tr>
<tr>
<td>Kappa</td>
<td>Κ</td>
<td>κ</td>
<td>Chi</td>
<td>Χ</td>
<td>χ</td>
</tr>
<tr>
<td>Lambda</td>
<td>Λ</td>
<td>λ</td>
<td>Psi</td>
<td>Ψ</td>
<td>ψ</td>
</tr>
<tr>
<td>Mu</td>
<td>Μ</td>
<td>μ</td>
<td>Omega</td>
<td>Ω</td>
<td>ω</td>
</tr>
</tbody>
</table>

Other Useful Data

<table>
<thead>
<tr>
<th>Joule equivalent (1 cal)</th>
<th>4.184 J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute zero (0 K)</td>
<td>−273.15°C</td>
</tr>
<tr>
<td>Earth:</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>5.98 × 10^{24} kg</td>
</tr>
<tr>
<td>Radius (mean)</td>
<td>6.38 × 10^6 m</td>
</tr>
<tr>
<td>Moon:</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>7.4 × 10^{22} kg</td>
</tr>
<tr>
<td>Radius (mean)</td>
<td>1.74 × 10^6 m</td>
</tr>
<tr>
<td>Sun:</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>2.0 × 10^{30} kg</td>
</tr>
<tr>
<td>Radius (mean)</td>
<td>7 × 10^8 m</td>
</tr>
<tr>
<td>Earth-sun distance (mean)</td>
<td>1.50 × 10^{11} m</td>
</tr>
<tr>
<td>Earth-moon distance (mean)</td>
<td>3.84 × 10^8 m</td>
</tr>
</tbody>
</table>
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-11.6</td>
<td>-59</td>
<td>-416</td>
<td>-36</td>
<td></td>
</tr>
<tr>
<td>-34.8</td>
<td>-60</td>
<td>39/10</td>
<td>-37</td>
<td></td>
</tr>
<tr>
<td>-7/2</td>
<td>-61</td>
<td>-20</td>
<td>-38</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-62</td>
<td>28</td>
<td>-39</td>
<td></td>
</tr>
<tr>
<td>1.9881, 1.9999</td>
<td>-63</td>
<td>12</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>1.999990, 1.999962, 1.999396</td>
<td>-64</td>
<td>-49.2</td>
<td>-41</td>
<td></td>
</tr>
<tr>
<td>3/10(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>-833/5</td>
<td>-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>598/5</td>
<td>-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>5</td>
<td>-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>-7</td>
<td>-47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>-1/7</td>
<td>-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>-5</td>
<td>-49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>-3/49</td>
<td>-51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>7/10</td>
<td>-52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>25</td>
<td>-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>8</td>
<td>-54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2#</td>
<td>-2</td>
<td>-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>-76</td>
<td>-4</td>
<td>-56</td>
<td></td>
</tr>
<tr>
<td>8#2</td>
<td>-77</td>
<td>-9</td>
<td>-57</td>
<td></td>
</tr>
</tbody>
</table>

280
<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>b^3</td>
<td>-15</td>
<td>$X < 3$ $X > 3$</td>
</tr>
<tr>
<td>a^7</td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>$x^3 y^{-3}$</td>
<td>-17</td>
<td>$371/99$</td>
</tr>
<tr>
<td>$x^4 y^{-5}$</td>
<td>-18</td>
<td>$(183,062)/9990$</td>
</tr>
<tr>
<td>1</td>
<td>-19</td>
<td>$(12,346,418)/999900$</td>
</tr>
<tr>
<td>$3ab^2$</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>$6x^3 y^2$</td>
<td>-21</td>
<td>-1</td>
</tr>
<tr>
<td>$4/7xyz^5$</td>
<td>-22</td>
<td>3</td>
</tr>
<tr>
<td>$1/3x^2 y^3 z^{-8}$</td>
<td>-23</td>
<td>1</td>
</tr>
<tr>
<td>$8a^3 b^6$</td>
<td>-24</td>
<td>1</td>
</tr>
<tr>
<td>$16x^2 y^6$</td>
<td>-25</td>
<td>4</td>
</tr>
<tr>
<td>16^{12}</td>
<td>-26</td>
<td>$6x^5$</td>
</tr>
<tr>
<td>$81x^8$</td>
<td>-27</td>
<td>$12y^7$</td>
</tr>
<tr>
<td>-16^{12}</td>
<td>-28</td>
<td>$15 a^{-1} b^5$</td>
</tr>
<tr>
<td>$-81x^8$</td>
<td>-29</td>
<td>$12 x^{-3} y^7$</td>
</tr>
<tr>
<td>$36a^4 b^6 c^2$</td>
<td>-30</td>
<td>$72x^5$</td>
</tr>
<tr>
<td>$25x^6 y^4 z^2$</td>
<td>-31</td>
<td>$432 Y^5$</td>
</tr>
<tr>
<td>$1/25 c^2 d^4$</td>
<td>-32</td>
<td>$-18x^7yz$</td>
</tr>
<tr>
<td></td>
<td>-33</td>
<td>$-10x^6yz$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>-65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.65x10^5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.645x10^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7x10^-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.58x10^-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7x10^-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.8x10^-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.1x10^{11}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3x10^7</td>
<td></td>
</tr>
</tbody>
</table>
\[2X^2Y - 7XY^2 + 8XY + 5 \]
\[-10Pq^2 - 5Pq^2 + 7Pq^2 - 4P + 2q + 3 \]
\[-9Pq^2 - 3Pq^2 + 11Pq - 6P + 4q + 5 \]
\[3X + 2Y - 2Z - 2 \]
\[7X^2 + 12XY - 2X - Y - 9 \]
\[5X\sqrt{y} - 4y\sqrt{x} - 2 / 5 \]
\[7X\sqrt{y} - 5y\sqrt{x} + 1 \]
\[-5X^3 + 7X^2 - 3X + 6 \]
\[4Y^4 - 7Y^2 + 2Y + 1 \]
\[-2X^2 + 6X - 2 \]
\[-4X^2 + 8XY - 5Y^2 + 3 \]
\[6a - 5b - 2C + 4d \]
\[8a - 8b - 2c + 6d \]
\[X^4 - 3X^3 - 4X^2 + 9X - 3 \]
\[2X^4 - 5X^3 - 7X^2 + 10X - 5 \]
\[9\sqrt{Y} - 3y\sqrt{x} + 9.1 \]
\[13\sqrt{y} - 5y\sqrt{x} + 5/3 \]
\[-1.047Pq^2 q - 2.479Pq^2 + 8.879Pq - 104.14425 \]
\[(XY)^{ac + bc} \]
\[(MN)^x \]
\[9X^2a \quad 2b \]
\[\frac{x^6y}{y^{18E}} \]
\[\$ 750.43 \]
\[\$ 728.12 , \$ 791.88 \]
\[10^x \quad \text{محيط} \quad 42 \quad 1.8 \]
\[3 \quad 0 , 1 , 2 , 3 \]
\[3 \quad 0 , 6 , 6 , 3 \]
\[7 , 0 , 7 , 5 , 2 \]
\[6 , 0 , 1 , 6 , 5 \]
\[8 , 0 , 2 , 4 , 8 , 6 \]
\[3X^2Y - 5XY^2 + 7XY + 2 \]
\[
\begin{align*}
4X^4-12X^2Y+9Y^2 & \quad \vdash 15 \\
16X^6-40X^4Y+25Y^2 & \quad \vdash 16 \\
4X^6+12X^3Y+9Y^4 & \quad \vdash 17 \\
25X^6+20X^3Y^2+4Y^4 & \quad \vdash 18 \\
(1/4)X^4-(3/5)X^2Y+(3/25)Y^2 & \quad \vdash 19 \\
(\frac{1}{16})X^4-(\frac{1}{3})X^2Y & \quad \vdash 20 \\
(4/9)Y^2 & \quad \vdash 21 \\
0.25X^2+0.7XY^2+0.49Y^4 & \quad \vdash 22 \\
0.09X^2+0.48XY^2+0.64Y^4 & \quad \vdash 23 \\
9X^2-4Y^2 & \quad \vdash 24 \\
9X^2-25Y^2 & \quad \vdash 25 \\
X^4-Y^2-Z^2 & \quad \vdash 26 \\
4X^4-25X^2Y^2 & \quad \vdash 27 \\
9X^4-2 & \quad \vdash 28 \\
25X^4-3 & \quad \vdash 29 \\
4X^2+12XY+9Y^2-16 & \quad \vdash 30 \\
25X^2+20XY+4Y^2-9 & \quad \vdash 31 \\
X^4+6X^2Y+9Y^2-Y^4 & \quad \vdash 32 \\
4X^4+4X^2Y+Y^2-Y^4 & \quad \vdash 33 \\
2859.6XY^{-2}-6153.8XY+7243.4\sqrt{xy} & \quad \vdash 34 \\
-10,254.12 & \quad \vdash 35 \\
6X^3+4X^2+32X-64 & \quad \vdash 36 \\
6Y^3+3Y^2+9Y+27 & \quad \vdash 37 \\
4a^3b^2-10a^2b^2+3ab^3+4ab^2-6b^3+4a^2b & \quad \vdash 38 \\
-2ab+3b^2 & \quad \vdash 39 \\
2X^4-X^2Y^2-4X^3y-2Y^4+3XY^3 & \quad \vdash 40 \\
a^3-b^3 & \quad \vdash 41 \\
4X^2+8xy+3Y^2 & \quad \vdash 42 \\
4a^2-8ab+3b^2 & \quad \vdash 43 \\
12X^3+X^2Y-\frac{3}{2}X^2Y-\frac{1}{3}X^2Y^2 & \quad \vdash 44 \\
6Y^4-1/2X^3Y^3+3/5X^2Y^2-1/20X^2 & \quad \vdash 45 \\
2X^3-2\sqrt{2X^2Y}-2\sqrt{2X^2Y^2}+2Y^3 & \quad \vdash 46 \\
3Y^3-\sqrt{3xy^2}-2\sqrt{3y^2}+2x & \quad \vdash 47 \\
4X^2+12XY+9Y^2 & \quad \vdash 48 \\
25X^2+20XY+4y^2 & \quad \vdash 49 \\
\end{align*}
\]
\[a^{2n} + 2a^n b^n + b^{2n}\]
\[16x^4 - 32x^3 + 16x^2\]
\[-a^4 - 2a^3 b + 25a^2 b^2 + 2ab^3 - 25b^2 + b^4\]
\[x^4 - b^2\]
\[T^2m^2 + 2n^2\]
\[a^2 + b^2 + c^2 + 2ab + 2ac + 2bc\]
\[a^3 + b^3 + c^3 + 3a^2 b + 3a^2 c + 3b^2 a + 3b^2 c + 3c^2 a + 3c^2 b + 6abc\]
\[a^4 + 4a^3 b + 6a^2 b^2 + 4ab^3 + b^4\]
\[x^5 - y^5\]
\[m^5 + t^5\]
\[a - b\]
\[9a^2 + 6ab + b^2\]
\[4x^2 - 12xy + 9y^2\]
\[6x^2 + 6x - 12\]
\[6a^2 - 5ab - 6b^2\]
\[x^4 - 1\]
\[y^4 - 16\]
\[16x^4 - y^4\]
\[625x^4 - y^4\]
\[0.002601x^2 + 0.00.08xy + 0.001064y^2\]
\[1.065024x^2 - 5.184768xy + 6.310\]
\[144y^2\]
\[2462.0358x^2 - 945.0214x - 38.908\]
\[169.625105x^2 - 711.87827x - 546.525\]
\[y^3 + 15y^2 + 75y + 125\]
\[t^3 - 21t^2 + 147t - 343\]
\[m^6 - 6m^4 n + 12m^2 n^2 - 8n^3\]
\[27t^6 + 108t^4 + 144t^2 + 64\]
\[a^{2n} b^{2n}\]
\[t^2 a - 3t a - 28\]
\[x^{3m} - 3x^{2m} t^n + 3x^m t^{2n} - t^{3n}\]
\[y^{3n + 3 + n + 3 - 4y^4 z^3n}\]
\[x^6 - 1\]
\[
\begin{align*}
(X-Y)^5 &= 1.5 \\
(M+N) &= 5 \\
(3C+D)^6 &= 1 \\
(X-Y)^6 &= 1 \\
(\text{X-Y})^6 &= 1
\end{align*}
\]

\[
\begin{align*}
2187C^7 &= 5103C^6d + 1215C^4d^2 - 540C^3d^3 + 135C^2d^4 + 18Cd^5 + d^6 \\
945C^3d^4 &= 189C^2d^5 + 21Cd^6 - d^7 \\
729C^6 &= 1458C^5d + 1215C^4d^2 - 540C^3d^3 + 135C^2d^4 + 18Cd^5 + d^6 \\
T^{-12} + 12T^{-10} + 60T^{-8} + 160T^{-6} + 240T^{-4} + 64 + 192e^{-2}
\end{align*}
\]
\[
6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720
\]
\[
\frac{5!}{(5-0)!0!} = 1
\]
\[
\frac{8!}{(8-4)!4!} = 70
\]
\[
9!
\]
\[
(a+b)^6, 15a^4b^2
\]
\[
21x^2y^5
\]
\[
(a-2)^2 = -745, 472a^3
\]
\[
3,897, 234x^2
\]
\[
1120x^{12}y^2
\]
\[
\frac{35}{27} b^{-5}
\]
\[
(2u-3v^2)^10 \implies -1, 959, 552u^5
\]
\[
30x/\sqrt{x}, 30x/\sqrt{3}
\]
\[
(x^2 + x^2)^4 \implies x^8 + 4x^4 + 6x^4 + x^8
\]
\[
-3x^2 - 6x^2 + 15x + 15x - 6x^2 + x^3
\]
\[
(\text{X-Y})^3
\]
\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
\end{array}
\]
\[
X^3 - 3X^2Y + 3XY^2 - Y^3
\]
\[
X^5 - 5X^4Y + 10X^3Y^2 + 10X^2Y^3 + 5XY^4 \cdot 10
\]
\[
-5
\]
\[
X^{-7} + 7X^{-6}Y + 21X^{-5}Y^2 + 35X^{-4}Y^3 + 35X^{-3}Y^4 : 11
\]
\[
+ 21X^{-2}Y^5 + 7X^{-1}Y^6 + 4Y^7
\]
\[
8S^3 - 36S^2T^2 + 54ST^4 - 27T^6
\]
\[
a^9 - 18a^7 + 144a^5 - 672a^3 + 2016a - 4032a^{-1} : 13
\]
\[
5376a^{-3} - 4608a^{-5} + 2304a^{-7} - 512a^{-9}
\]
\[
512X^9 + 2304X + 4608X^5 + 5376X^3 + 4032X^+ : 14
\]
\[
2016X^{-1} + 672X^{-3} + 144X^{-5} + 18X^{-7} + X^{-9}
\]
\[
\binom{n}{2} + \binom{n}{3} + \binom{n}{4} \cdot \binom{n}{5} + \binom{n}{6} \cdot \binom{n}{7} \cdot \binom{n}{8}
\]
\[
1 + 3n \cdot \binom{n+1}{2} + \binom{n+2}{3} + \binom{n+3}{4} \cdot \binom{n+4}{5} \cdot \binom{n+5}{6} \cdot \binom{n+6}{7} \cdot \binom{n+7}{8}
\]
\[
9 - 12\sqrt{3}t + 18t^2 - 4\sqrt{3}t^3 + t^4
\]
\[
125 + 150\sqrt{5}t - 375t^2 - 100\sqrt{5}t^3 + 75t^4 + 6\sqrt{5}t^5 + t^6
\]
<table>
<thead>
<tr>
<th>1.6</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3X+5)(3X-5)</td>
<td>(55)</td>
</tr>
<tr>
<td>(4X-3)(4X+3)</td>
<td>144</td>
</tr>
<tr>
<td>4X(y^2-z^2)(y^2-z^2)</td>
<td>90,720X^8,Y^6</td>
</tr>
<tr>
<td>-5X(y^2+z^2)(y+z)(y-z)</td>
<td>- :37</td>
</tr>
<tr>
<td>(y-3)^2</td>
<td>- :38</td>
</tr>
<tr>
<td>(X+4)^2</td>
<td>- :39</td>
</tr>
<tr>
<td>(1-4X)^2</td>
<td>- :40</td>
</tr>
<tr>
<td>(1+5X)^2</td>
<td>- :41</td>
</tr>
<tr>
<td>(2X+\sqrt{5})(2X-\sqrt{5})</td>
<td>- :42</td>
</tr>
<tr>
<td>(4X-\sqrt{7})(4X+\sqrt{7})</td>
<td>- :43</td>
</tr>
<tr>
<td>(XY-7)^2</td>
<td>- :44</td>
</tr>
<tr>
<td>(XY-8)^2</td>
<td>- :45</td>
</tr>
<tr>
<td>4a(X+7)(X-2)</td>
<td>3ab (6a-5b)</td>
</tr>
<tr>
<td>Y(7X-4)(3X+2)</td>
<td>4XY(X+3Y)</td>
</tr>
<tr>
<td>(a+b+c)(a+b-c)</td>
<td>(a+C)(b-2)</td>
</tr>
<tr>
<td>(X+Y+A+B)(X+Y-A-B)</td>
<td>(X+6)(X+3)</td>
</tr>
<tr>
<td>(X^2-6)(3X+1)</td>
<td>(X^2-6)(3X+1)</td>
</tr>
<tr>
<td>Expression</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>$1.96(X+2.980Y)(X-2.980Y)$</td>
<td>42</td>
</tr>
<tr>
<td>$h(3X^2+3Xh+h^2)$</td>
<td>43</td>
</tr>
<tr>
<td>$0.02(X+0.005)$</td>
<td>44</td>
</tr>
<tr>
<td>$(y^2+12)(y^2-7)$</td>
<td>45</td>
</tr>
<tr>
<td>$(X^2+16)(X^2-5)$</td>
<td>46</td>
</tr>
<tr>
<td>$(X^2+16)(X+\sqrt{5})(X-\sqrt{5})$</td>
<td>47</td>
</tr>
<tr>
<td>$(Y+\frac{4}{7})(7-\frac{2}{7})$</td>
<td>48</td>
</tr>
<tr>
<td>$(X+\frac{4}{5})(X-\frac{1}{5})\cdot\frac{1}{25}(5X+4)(5X-1)$</td>
<td>49</td>
</tr>
<tr>
<td>$(t+0.9)(t-0.3)$</td>
<td>50</td>
</tr>
<tr>
<td>$(m-0.1)(m+0.5)$</td>
<td>51</td>
</tr>
<tr>
<td>$(X^n+8)(X^n-3)$</td>
<td>52</td>
</tr>
<tr>
<td>$(2X^n-3)(2X^n+1)$</td>
<td>53</td>
</tr>
<tr>
<td>$(X+b)(X+a)$</td>
<td>54</td>
</tr>
<tr>
<td>$(\frac{1}{2}t-\frac{2}{5})^2$</td>
<td>55</td>
</tr>
<tr>
<td>$(\frac{1}{9}r+\frac{1}{12}s)(\frac{4}{3}r+s)$</td>
<td>56</td>
</tr>
<tr>
<td>$(5y^m+X^n-1)(5y^m-X^n+1)$</td>
<td>57</td>
</tr>
<tr>
<td>$2(X^2a+3)(2X^2a+5)$</td>
<td>58</td>
</tr>
<tr>
<td>$3(X^n-2y^m)(X^2n+2X^ny^m+4y^2m)$</td>
<td>59</td>
</tr>
<tr>
<td>$(X^2a-tb)(X^4a+X^2atb+t^2b)$</td>
<td>60</td>
</tr>
<tr>
<td>$(R+S+T-V)(R+S-T+V)$</td>
<td>24</td>
</tr>
<tr>
<td>$5(y^2+4x)(y+2x)(y-2x)$</td>
<td>25</td>
</tr>
<tr>
<td>$6(y^2+4x^2)(y-2x)(y+2x)$</td>
<td>26</td>
</tr>
<tr>
<td>$(x+2)(X^2-2X+4)$</td>
<td>27</td>
</tr>
<tr>
<td>$(y-4)(y^2+4y+16)$</td>
<td>28</td>
</tr>
<tr>
<td>$3X^3\frac{3}{8}X$</td>
<td>29</td>
</tr>
<tr>
<td>$3(X-\frac{1}{2})(X^2+\frac{1}{2}X+\frac{1}{4})$</td>
<td>30</td>
</tr>
<tr>
<td>$(5Y+\frac{1}{3})(y^2-\frac{1}{3}y+\frac{1}{9})$</td>
<td>31</td>
</tr>
<tr>
<td>$(x+0.1)(x^2-0.1x+0.01)$</td>
<td>32</td>
</tr>
<tr>
<td>$(y-0.5)(y^2+0.5y+0.25)$</td>
<td>33</td>
</tr>
<tr>
<td>$3(z-2)(z^2+2z+4)$</td>
<td>34</td>
</tr>
<tr>
<td>$4(t+3)(t^2-3t+9)$</td>
<td>35</td>
</tr>
<tr>
<td>$(a+t)(t^2-at+t^2)(a-t)$</td>
<td>36</td>
</tr>
<tr>
<td>(a^2+at+t^2)</td>
<td>37</td>
</tr>
<tr>
<td>$(4m^2+y^2)(16m^4-4m^2y^2+y^4)$</td>
<td>38</td>
</tr>
<tr>
<td>$2a(2a^3+ab^3)(4a^2-6a^2b^2+9b^4)$</td>
<td>39</td>
</tr>
<tr>
<td>$3a^2X(2X-5a^2)(4X^2+10a^2X+25a^4)$</td>
<td>40</td>
</tr>
<tr>
<td>$(X+\frac{4.195235}{X-4.195235})$</td>
<td>41</td>
</tr>
<tr>
<td>$(X+2.8337)(X-2.8337)$</td>
<td>42</td>
</tr>
<tr>
<td>$(6.082763X+3.807887Y)$</td>
<td>43</td>
</tr>
<tr>
<td>$(6.082763X-3.807887Y)$</td>
<td>44</td>
</tr>
<tr>
<td>رقم</td>
<td>صيغة</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>16</td>
<td>(Y(y-1)^2(y-2))</td>
</tr>
<tr>
<td>17</td>
<td>((x+1)(x^2+1)(x-1)^3)</td>
</tr>
<tr>
<td>18</td>
<td>(\left(\frac{q}{r}\right) 1.7)</td>
</tr>
<tr>
<td>19</td>
<td>(x=0, x=1)</td>
</tr>
<tr>
<td>19</td>
<td>(-2,1, -1)</td>
</tr>
<tr>
<td>19</td>
<td>(x=0, x=3, x=-2)</td>
</tr>
<tr>
<td>20</td>
<td>(\frac{5x}{2})</td>
</tr>
<tr>
<td>21</td>
<td>تمام اعداد حقيقي</td>
</tr>
<tr>
<td>22</td>
<td>تمام اعداد تعويضي</td>
</tr>
<tr>
<td>22</td>
<td>مئات اعداد غير از</td>
</tr>
<tr>
<td>22</td>
<td>تمام اعداد حقيقي غير از</td>
</tr>
<tr>
<td>23</td>
<td>(\frac{1}{x-y})</td>
</tr>
<tr>
<td>24</td>
<td>(\frac{2x^2+13x+15}{7x})</td>
</tr>
<tr>
<td>25</td>
<td>(\frac{3x^2-13x-10}{7x})</td>
</tr>
<tr>
<td>26</td>
<td>(\frac{a+2}{a-5})</td>
</tr>
<tr>
<td>27</td>
<td>(\frac{a^2+6a+9}{a^2-2a-24})</td>
</tr>
<tr>
<td>28</td>
<td>(\frac{5a+13}{(a+3)(a-3)})</td>
</tr>
<tr>
<td>29</td>
<td>(\frac{3y-10}{(y+4)(y-5)})</td>
</tr>
<tr>
<td>30</td>
<td>(\frac{a-b}{3x-12})</td>
</tr>
<tr>
<td>31</td>
<td>(\frac{1}{2x+8})</td>
</tr>
<tr>
<td>Expression</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>$\frac{a^2 - 1}{a^2 + 1}$</td>
<td>43</td>
</tr>
<tr>
<td>$\frac{a^2(b - 1)}{b^2(a - 1)}$</td>
<td>44</td>
</tr>
<tr>
<td>$\frac{C^2 - 2C + 4}{C}$</td>
<td>45</td>
</tr>
<tr>
<td>$\frac{X^2 - Y^2}{X^2 - XY + Y^2}$</td>
<td>46</td>
</tr>
<tr>
<td>$\frac{XY}{X - Y}$</td>
<td>47</td>
</tr>
<tr>
<td>$\frac{a+b}{ab}$</td>
<td>48</td>
</tr>
<tr>
<td>$\frac{a+b}{X - Y}$</td>
<td>49</td>
</tr>
<tr>
<td>$\frac{-a-b}{1-a}$</td>
<td>50</td>
</tr>
<tr>
<td>$\frac{X^2 - Y^2}{XY}$</td>
<td>51</td>
</tr>
<tr>
<td>$\frac{a+b}{ab}$</td>
<td>52</td>
</tr>
<tr>
<td>$\frac{1+a}{1-a}$</td>
<td>53</td>
</tr>
<tr>
<td>$\frac{1-X}{1+X}$</td>
<td>54</td>
</tr>
<tr>
<td>$\frac{b+a}{b-a}$</td>
<td>55</td>
</tr>
<tr>
<td>$\frac{-5y-9}{(y+3)^2}$</td>
<td>30</td>
</tr>
<tr>
<td>$\frac{4X-8y}{(X+y)(X-y)}$</td>
<td>31</td>
</tr>
<tr>
<td>$\frac{2a}{(A+1)(a-1)}$</td>
<td>32</td>
</tr>
<tr>
<td>$\frac{3X-4}{(X-2)(X-1)}$</td>
<td>33</td>
</tr>
<tr>
<td>$\frac{5a^2+10ab-4b^2}{(y-2)(y-3)}$</td>
<td>34</td>
</tr>
<tr>
<td>$\frac{6a^2+9ab+3b^2+5}{(a+b)(a-b)}$</td>
<td>35</td>
</tr>
<tr>
<td>$\frac{11X^2-18X+8}{(X+2)(X-2)^2}$</td>
<td>36</td>
</tr>
<tr>
<td>$\frac{33-32X+9X^2}{(3+X)(3-X)^2}$</td>
<td>37</td>
</tr>
<tr>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>$\frac{3}{X+2}$</td>
<td>39</td>
</tr>
<tr>
<td>$\frac{X+Y}{X}$</td>
<td>40</td>
</tr>
<tr>
<td>$\frac{X}{1+X}$</td>
<td>41</td>
</tr>
<tr>
<td>$\frac{a}{a+b}$</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>- 4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>4/X</td>
</tr>
<tr>
<td>6/t</td>
<td>12</td>
</tr>
<tr>
<td>/b+1/</td>
<td>13</td>
</tr>
<tr>
<td>/2c-3/</td>
<td>14</td>
</tr>
<tr>
<td>-3X</td>
<td>15</td>
</tr>
<tr>
<td>-2Y</td>
<td>16</td>
</tr>
<tr>
<td>(/Y+8/)</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>(\frac{4\sqrt{3}}{3})</td>
<td>22</td>
</tr>
<tr>
<td>(\frac{3\sqrt{5}}{3})</td>
<td>24</td>
</tr>
<tr>
<td>(\frac{9c^2/\sqrt{2}}{1d^3})</td>
<td>26</td>
</tr>
</tbody>
</table>

1 , 5	1
1, - 1	4
3 , 1	6
\[
\begin{align*}
\frac{y}{5z^2} & \sqrt[3]{20x^2z^2} \\
\frac{2x}{y} & \\
8x^2 & \sqrt{2} \\
4 & \sqrt[3]{4x^2} \\
ab^2 & x^2y \sqrt{a} \\
xy & a^3b \\
-2 & \sqrt{2} \\
12 & 5 \sqrt{5} \\
4 & \sqrt[3]{3} \\
19 & 3 \sqrt{x^2} - 3x \\
(5a^2 - 3b^2) & \sqrt{a + b} \\
4y & \sqrt{3 - 2y} \sqrt{6} \\
(3x-2) & \sqrt[3]{x^2} \\
1 & \\
-12 & \\
t-2x & \sqrt{c} + x^2 \\
\frac{(a+1)}{a} & \sqrt{a} \\
10 & \sqrt[7]{7} \\
2a^2b + 5a \sqrt{b} - 3y & \\
x & \\
h & \\
3 & \sqrt{2} \\
4 & \sqrt{3} \\
2x^2y & \sqrt{6} \\
2y^2z & \sqrt{15} \\
3x & 3 \sqrt[4]{y} \\
2xy & 5 \sqrt{x^2} \\
2(x+4) & 3 \sqrt{(x+4)^2} \\
2(x+1) & 3 \sqrt[3]{y(x+1)} \\
\sqrt{7b} & \\
2 & \sqrt[5]{5y} \\
1 & \frac{1}{2x} \\
Y & \sqrt[5]{3\sqrt{a+b}} \\
\sqrt[7]{x^2 + xy + y^2} & \\
\frac{3a}{4b} & \sqrt{2b} \\
\frac{b}{6a} & \sqrt{15a}
\end{align*}
\]
\[
\begin{align*}
0.1251 y^2 z & \quad 80 \\
0.5933a \sqrt{b} & \quad 81 \\
0.1974b \sqrt{a} & \quad 82 \\
h = \frac{a}{2} \sqrt{3} & \quad 83 \\
A = \frac{a^2}{4} \sqrt{3} & \quad 84 \\
\sqrt{2} S & \quad 85 \\
\sqrt{2} S & \quad 86 \\
x = 8 & \quad 87 \\
50 \text{ ft}^2 & \quad 88 \\
\frac{(2+x^2)(\sqrt{1+x^2})}{1+x^2} & \quad 89 \\
\left(\frac{(2-3x^2) \sqrt{1-x^2}}{2(1-x^2)}\right)^{\frac{1}{2}} & \quad 90 \\
5+2\sqrt{6} & \quad 91 \\
\frac{11\sqrt{a}}{1.9} & \quad 1.9 \\
\frac{4\sqrt{x^3}}{1} & \quad 1 \\
\frac{5\sqrt{y^2}}{2} & \quad 2 \\
8 & \quad 3 \\
128 & \quad 4 \\
\frac{1}{5} & \quad 5 \\
8.88 \text{ sec} & \quad 65 \\
91.92 \text{ ft} & \quad 66 \\
\frac{3(3-\sqrt{5})}{2} & \quad 67 \\
\sqrt{3+1} & \quad 68 \\
\frac{2}{3} \sqrt{6} & \quad 69 \\
\frac{\sqrt{4}}{2} & \quad 70 \\
\frac{8x-20\sqrt{xy} - 6x \sqrt{y} + 15y \sqrt{x}}{4x - 25y} & \quad 71 \\
15+10 \sqrt{xy} + 6x \sqrt{y} + 4y \sqrt{x} & \quad 72 \\
9x-4y & \quad 73 \\
\frac{2-5a}{6(\sqrt{2} - \sqrt{5})} & \quad 74 \\
\frac{3-5y}{4(\sqrt{3}+\sqrt{5})} & \quad 75 \\
\frac{X}{X-2 \sqrt{x+1} + 2} & \quad 76 \\
\frac{X}{X+8+4 \sqrt{x+4}} & \quad 77 \\
\frac{a}{3(\sqrt{a}+3' \sqrt{3'})} & \quad 78 \\
\frac{1}{\sqrt{a+h} + \sqrt{a}} & \quad 79 \\
10.124X^2y & \quad 79
\end{align*}
\]
<table>
<thead>
<tr>
<th>Term</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3ab^3$</td>
<td>23</td>
</tr>
<tr>
<td>$3x^2y^2$</td>
<td>24</td>
</tr>
<tr>
<td>$\frac{m^2n^4}{2}$</td>
<td>25</td>
</tr>
<tr>
<td>$\frac{2}{m^2n^3}$</td>
<td>26</td>
</tr>
<tr>
<td>$8a^2$</td>
<td>27</td>
</tr>
<tr>
<td>$24\sqrt[3]{a}$</td>
<td>28</td>
</tr>
<tr>
<td>$\frac{3}{x^3b^2}$</td>
<td>29</td>
</tr>
<tr>
<td>$\frac{2}{xy}$</td>
<td>30</td>
</tr>
<tr>
<td>$x^3\sqrt{y}$</td>
<td>31</td>
</tr>
<tr>
<td>$4\sqrt{ab}$</td>
<td>32</td>
</tr>
<tr>
<td>$\sqrt{288}$</td>
<td>33</td>
</tr>
<tr>
<td>$2\sqrt[4]{2}$</td>
<td>34</td>
</tr>
<tr>
<td>$12\sqrt{x^{11}y^7}$</td>
<td>35</td>
</tr>
<tr>
<td>$b\sqrt{a^2b}$</td>
<td>36</td>
</tr>
<tr>
<td>$a\sqrt{a^5}$</td>
<td>37</td>
</tr>
<tr>
<td>$a\sqrt{a^5}$</td>
<td>38</td>
</tr>
<tr>
<td>$(a+x)^{12}\sqrt{(a+x)^{11}}$</td>
<td>39</td>
</tr>
<tr>
<td>$\frac{1}{16}$</td>
<td></td>
</tr>
<tr>
<td>$a\frac{\sqrt{ab}}{b}$</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{x^2y^{-1}}$</td>
<td></td>
</tr>
<tr>
<td>$(20)^{\frac{3}{2}}$</td>
<td></td>
</tr>
<tr>
<td>$(17)^{3/5}$</td>
<td></td>
</tr>
<tr>
<td>$(13)^{5/4}$</td>
<td></td>
</tr>
<tr>
<td>$(12)^{4/5}$</td>
<td></td>
</tr>
<tr>
<td>$(11)^{1/6}$</td>
<td></td>
</tr>
<tr>
<td>$(7)^{1/12}$</td>
<td></td>
</tr>
<tr>
<td>$(5)^{5/6}$</td>
<td></td>
</tr>
<tr>
<td>$(2)^{5/6}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{16}$</td>
<td></td>
</tr>
<tr>
<td>$2y^2$</td>
<td></td>
</tr>
<tr>
<td>$2c^2d^3$</td>
<td></td>
</tr>
<tr>
<td>$(a^2+b^2)^{1/3}$</td>
<td></td>
</tr>
<tr>
<td>$(a^3-b^3)^{1/4}$</td>
<td></td>
</tr>
<tr>
<td>y=8</td>
<td>5</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>$\frac{4}{5}$</td>
<td>7</td>
</tr>
<tr>
<td>(-8)</td>
<td>8</td>
</tr>
<tr>
<td>x=2</td>
<td>9</td>
</tr>
<tr>
<td>-3</td>
<td>10</td>
</tr>
<tr>
<td>$\frac{-3}{2}$</td>
<td>11</td>
</tr>
<tr>
<td>$\frac{-27}{24}$</td>
<td>12</td>
</tr>
<tr>
<td>x=-2</td>
<td>13</td>
</tr>
<tr>
<td>∞</td>
<td>14</td>
</tr>
<tr>
<td>$\left(\frac{3}{2}, \frac{2}{3}\right)$</td>
<td>15</td>
</tr>
<tr>
<td>$\left(\frac{2}{5}, -\frac{3}{2}\right)$</td>
<td>16</td>
</tr>
<tr>
<td>(0,1, -2)</td>
<td>17</td>
</tr>
<tr>
<td>(0,-2,3)</td>
<td>18</td>
</tr>
<tr>
<td>$\left(\frac{2}{3}, -1\right)$</td>
<td>19</td>
</tr>
<tr>
<td>$\left(\frac{3}{5}, 1\right)$</td>
<td>20</td>
</tr>
<tr>
<td>(4,1)</td>
<td>21</td>
</tr>
<tr>
<td>(8,3)</td>
<td>22</td>
</tr>
<tr>
<td>$(-2,-1)$</td>
<td>23</td>
</tr>
<tr>
<td>(Y/Y \geq \frac{22}{13})</td>
<td>(5, 10)</td>
</tr>
<tr>
<td>(X/X \leq 5)</td>
<td>((-\frac{5}{3}, 4, \frac{5}{2}))</td>
</tr>
<tr>
<td>(X/X \leq \frac{15}{34})</td>
<td>((-\frac{11}{8}, -\frac{1}{4}, \frac{2}{3}))</td>
</tr>
<tr>
<td>(X/X \leq -\frac{3}{14})</td>
<td>(0, -\frac{1}{4}, -\frac{1}{4})</td>
</tr>
<tr>
<td>(X/X < 1)</td>
<td>(0, \frac{1}{3}, -\frac{1}{3})</td>
</tr>
<tr>
<td>(X/X > 2.5)</td>
<td>(0, 3)</td>
</tr>
<tr>
<td>(Y/Y < -7)</td>
<td>(0, -2)</td>
</tr>
<tr>
<td>(t/t^2 = 5)</td>
<td>(0, -\frac{1}{3}, 2)</td>
</tr>
<tr>
<td>(m/ m^3 + 3 = m^2 - 2)</td>
<td>((\frac{1}{2}, \frac{2}{3}, 0))</td>
</tr>
<tr>
<td>(X/X > 3)</td>
<td>((\frac{3}{2}, -\frac{2}{3}, 1))</td>
</tr>
<tr>
<td>(X/X > -\frac{5}{2})</td>
<td>(4, -3, -\frac{1}{2})</td>
</tr>
<tr>
<td>(X/X < \frac{3}{4})</td>
<td>((\frac{1}{2}, 0, -3))</td>
</tr>
<tr>
<td>(x_{18})</td>
<td>((3, -3, 6, -6))</td>
</tr>
<tr>
<td>(x_{18})</td>
<td>(\frac{1.7892}{-1.305, 1.989})</td>
</tr>
<tr>
<td>(0, 2.1522)</td>
<td>((X/X > -3))</td>
</tr>
<tr>
<td>(0, -1.9492)</td>
<td>((X/X > -\frac{4}{5}))</td>
</tr>
<tr>
<td>(X/X < -0.7848)</td>
<td>((X/X > -\frac{5}{12}))</td>
</tr>
<tr>
<td>(4, -3)</td>
<td>14</td>
</tr>
<tr>
<td>-2</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>x=6</td>
<td>17</td>
</tr>
<tr>
<td>11/30</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>نخیر</td>
<td>22</td>
</tr>
<tr>
<td>بلوی</td>
<td>23</td>
</tr>
<tr>
<td>نخیر</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>y=0.94656</td>
<td></td>
</tr>
<tr>
<td>0.0855</td>
<td></td>
</tr>
<tr>
<td>(x/x # 3)</td>
<td></td>
</tr>
<tr>
<td>x/x # 2/</td>
<td></td>
</tr>
<tr>
<td>(x/x # -2)</td>
<td></td>
</tr>
<tr>
<td>(x/x # 2)</td>
<td></td>
</tr>
</tbody>
</table>
\[V_1 = \frac{H + msv_2}{ms} \]
\[V_1 = \frac{H}{ms} = V_2 \]
\[P = \frac{F_m}{m - F} \]
\[F = \frac{m_p}{p + m} \]
\[X = \frac{5 + ab}{a - b} \]
\[X = \frac{C}{2c} \]
\[X = \frac{-a}{9} \]
\[X = a - 7b \]

44% 8000 6%
3.171

$14,500 ,$
$21,000$
$23,520$
650

850

A=26°, B=130° C=24°
40°, 80°, 60°
L=93m W=68m

3 \times 2 , 2 \leftarrow 1 \rightarrow 4 \rightarrow 3

\begin{align*}
W &= \frac{p - 2d}{2} \\
a &= \frac{F}{m} \\
E &= IR \\
E &= I \\
m &= \frac{Fd^2}{Km} \\
T_1 &= \frac{T_2 p V_1}{P_2 V_2} \\
V_2 &= \frac{T_2 p V_1}{T_1 p_2} \\
\end{align*}
<p>| 13m, 6.5m | 26 |
| X=91% | 27 |
| 83% | 28 |
| X= 2cm | 29 |
| 8cm | 30 |
| 810,000 | 31 |
| 720,000 | 32 |
| 12Km/h | 33 |
| 4Km/h | 34 |
| A=46mph | 35 |
| B=58mph | 36 |
| 80mph, 66 mph | 37 |
| d= 98.3 miles | 38 |
| 450km | 39 |
| $\frac{34}{71}$ hr | 40 |
| $2 \frac{4}{13}$ hr | 41 |
| t= 6.21 hr. | 42 |
| A=23.95 hr | 43 |
| B=51.02 hr | 44 |
| $1147.40 | 45 |
| a, $2055.46 | 46 |</p>
<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>(\sqrt{7} - \sqrt{10})</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>(\sqrt{5} + \sqrt{1})</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>(-\sqrt{5})</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>(-2\sqrt{14})</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>(2\sqrt{5})</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>(3\sqrt{7})</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>(\sqrt{\frac{5}{2}})</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>(-\sqrt{\frac{7}{5}})</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>(-\frac{3}{2})</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>(\frac{5}{2})</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>(-\frac{5}{4})</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>(-2)</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>(\frac{5}{4})</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>(6+5i)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>(11+1)</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>(2+4i)</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>(5-7i)</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>(-4-1)</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>(-5+i)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>(-5+5i)</td>
</tr>
</tbody>
</table>

\(x^2 + 25y^2 \)

\((4a + 7bi)(4a - 7bi)\)

\[x = -\frac{3}{2} \]

\[y = 7 \]

\[x = 3, \ y = 2 \]

\[\frac{1}{2} + \frac{7}{2}i \]

\[\frac{22}{41} - \frac{7}{41}i \]

\[\frac{1}{3} + \frac{2\sqrt{2}}{3}i \]

\[\frac{1}{2} + \frac{\sqrt{3}}{2}i \]
\[
\begin{align*}
29 - \frac{5}{29} &= 1 \\
-1 &= 1 \\
\frac{1}{4} &= -\frac{1}{5} \\
X &= 2 + \frac{6}{1} \\
\frac{12}{5} &= \frac{1}{5} \\
\frac{8}{5} &= \frac{9}{5} \\
\frac{8}{29} + \frac{9}{29} &= 1 \\
X &= 2 - 1 \\
-\frac{1}{5} + \frac{7}{5} &= 1 \\
\frac{11}{25} + \frac{2}{25} &= 1 \\
\frac{4}{5} + \frac{3}{5} &= 1 \\
1 &= -21
\end{align*}
\]
\[\pm 1 \sqrt{5} \]
\[\pm \sqrt{\frac{b}{a}} \]
\[\pm \sqrt{\frac{k}{n}} \]
\[(7 \pm \sqrt{5}) \]
\[(-3 \pm \sqrt{2}) \]
\[\pm \frac{3}{2} \]
\[\pm \frac{5}{4} \]
\[h \pm \sqrt{a} \]
\[h \pm \sqrt{\frac{y-k}{a}} \]
\[-3 \pm \sqrt{5} \]
\[(3 \pm \sqrt{13}) \]
\[(3, -10) \]
\[(-3, 10) \]
\[\left(\frac{2 \pm \sqrt{14}}{2} \right) \]
\[\left(\frac{7 \pm \sqrt{13}}{12} \right) \]
\[\left(\frac{3}{2}, -5 \right) \]
\[\frac{5}{3} \]

<table>
<thead>
<tr>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>Z + W = Z + W</td>
<td>Z x W = Z x W</td>
<td>Z^n = Z^n</td>
<td>Z = Z</td>
<td>3 \frac{5}{2} - 4Z^2 + 3Z - 5</td>
<td>1</td>
<td>Z = 7 + \frac{3}{9} \lambda</td>
<td>a</td>
<td>\sqrt{y-k}</td>
<td>\sqrt{14}</td>
<td>\sqrt{13}</td>
<td>0</td>
<td>0</td>
<td>\sqrt{6}/2</td>
<td>\sqrt{21}/3</td>
<td>\sqrt{7}</td>
<td></td>
</tr>
<tr>
<td>عدد</td>
<td>معادله</td>
<td>جواب‌ها</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>$x^2 + 2x - 99 = 0$</td>
<td>$(1, -5)$</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>$x^2 - 16 = 0$</td>
<td>$(-3, 5)$</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>$x^2 - 14x + 49 = 0$</td>
<td>$(2, -\frac{1}{2})$</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>$9x^2 + 12x + 4 = 0$</td>
<td>$(-1, \frac{2}{5})$</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>$25x^2 - 20x - 12 = 0$</td>
<td>$-\frac{4 + \sqrt{7}}{3}$</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>$8x^2 + 6x + 1 = 0$</td>
<td>$3 \pm \sqrt{7}$</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>$4x^2 - 2(c+d)x + cd = 0$</td>
<td>$6 \pm \sqrt{33}$</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>$12x^2 - (4k + 3m)x + km = 0$</td>
<td>$(-2, -4)$</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>$x^2 - 4\sqrt{2}x + 6 = 0$</td>
<td>$\frac{1 + \sqrt{3}}{2}$</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>$x^2 - \sqrt{3}x - 6 = 0$</td>
<td>2 ± 31</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>$x^2 + 9 = 0$</td>
<td>$-\frac{1 + 21}{5}$</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>$x^2 + 16 = 0$</td>
<td>$(1.1754, -0.4254)$</td>
<td></td>
</tr>
</tbody>
</table>

یک جواب حقیقتی است

دو جواب حقیقتی است

سه عدد حقیقتی است

چهار عدد حقیقتی است
\[
\begin{align*}
(3 + \sqrt{5}) & \\
(12, 4) & \\
(10) & \text{2, 6} \\
\end{align*}
\]

\[
\begin{align*}
d &= \sqrt{\frac{KM_1 M_2}{f}} \\
C &= \sqrt{\frac{E}{m}} \\
t &= \sqrt{\frac{25}{a}} \\
r &= \frac{1}{2} \sqrt{\frac{V_0}{\pi}} \\
V_o \pm \sqrt{V_o^2 - 64S} &= \frac{-32}{-3a} \\
r &= \frac{-37h + \sqrt{9h^2 + 88h}}{4 \pi} \\
a = 1, b = -3, C = -2d \\
N &= (3 + \sqrt{9 + 8a})^{\frac{1}{2}} \\
t' &= \frac{\pi \pm \sqrt{n^2 - 12k \sqrt{2}}}{2 \sqrt{2}} \\
-1 + \sqrt{\frac{a}{p}} &= i \\
i &= 2 \left(-1 + \sqrt{\frac{a}{p}} \right) \\
18.75\% & \\
10\% & \\
11\% & \\
\end{align*}
\]

\[
\begin{align*}
(1.8693, -0.3252) & \\
(2, 3, 3, 2) & \\
(6, 3, 2) & \\
(-0.1 \pm \sqrt{0.31}) & \\
(-0.3 \pm \sqrt{0.89}) & \\
(-1 \pm \sqrt{1 + 4\sqrt{3}}) & \\
\frac{1 \pm \sqrt{1 + 4\sqrt{3}}}{2} & \\
(\sqrt{5 \pm \sqrt{5 + 4\sqrt{3}}}) & \\
\frac{\sqrt{3 \pm \sqrt{3 + 4\pi}}}{4} & \\
\frac{\sqrt{6 + \sqrt{6 + 8\sqrt{10}}}}{4} & \\
\frac{-5\sqrt{2} \pm 34}{4} & \\
(\frac{3}{4}, -2) & \\
(2, -3) & \\
(\frac{1 \pm \sqrt{113}}{2}) & \\
(-4, 3) & \\
\end{align*}
\]
\[
\left(2, \frac{-3}{k}\right) \\
\left(1, \frac{1}{1-k}\right) \\
\left(\frac{1}{m+n} - \frac{2}{m+n}\right) \\
(-X, \frac{X}{4}) \\
11.7% \\
\frac{27\sqrt{3}}{4} \\
a_3 = \sqrt{a_1^2 + a_2^2} \\
300c^2 \text{ (1.16) 2.7} \\
\frac{5}{3} \\
-63 \\
X = \pm \sqrt{2} \\
168 \\
\text{حل نتایج} \\
\text{حل نتایج} \\
X = 4 \\
9 \\
\text{حل نتایج} \\
2 \\
X = -6 \\
\text{حل نتایج} \\
\begin{array}{l}
n = 9 \\
11 \\
2\text{ft} \\
7\text{ft} \\
h = 4.685\text{cm} \\
127.28\text{ft} \\
A = 15\text{mph} \\
B = 20\text{mph} \\
A = 24\text{km/h} \\
B = 10\text{km/h} \\
a, t = 3.91\text{ sec.} \\
b, t = 1.906\text{ sec.} \\
c, s = 79.6\text{ m} \\
a, 10.1\text{ sec.} \\
b, 7.49\text{ sec.} \\
c, 272.5\text{m} \\
S = 3.237\text{cm} \\
2.2199\text{cm} \text{, } 8.0101\text{cm} \\
X = 7 \\
12 \\
X = 12 \\
$8 \\
\end{array}
\]
$x = 5 \pm \sqrt{2}$

$3 \pm \sqrt{2}$

$x = \frac{-8}{9}$

$x = 2$

$\frac{5}{4}$

$\sqrt{61} \div 18$

$\frac{(\sqrt{4})}{2} \cdot 8$

$x = 81, x = 1$

$16, \frac{1}{4}$

$x = \pm \sqrt{5}$

$1, -1, \pm \sqrt{2}$

$(-27, 8)$

$(64, -8)$

$z = 16$

729

$(7, -1, 5, 1)$

$\frac{28}{3}$

$x = 3, x = -1$

$\frac{1}{3}, -1$

$x = \frac{80}{9}$

-1

$x = 62.4450$

0.1444

$x = -8$

32

$t = 81$

0.1444

$x = \frac{1}{64}$

$\frac{1}{9}$

$m = -125$

$\frac{4n^2L}{t^2} = \frac{3x^2}{4s^2}$

$C = \sqrt{h^2 - d^2}$

$v = 207.8$

$10mi$

$h = 14,400ft$

$84ft$
\[1 \pm \sqrt{2} \, , \quad -1 \pm \frac{\sqrt{5}}{2} \]

\[(0, \frac{56}{4}) \]

\[= 132.66 \text{ft} \text{ High} \]

229.94 ft

\[X = 2.0485 \]

\[(\pm 1.9863, \pm 0.89661) \]

\[(4, 1) \]

\[-\frac{3}{2}, -1 \]

\[X = 19 \left(35\right) \]

\[(50.) \]

\[2 \cdot 9 \]

\[y = \frac{3}{2} x \]

\[y = 0.32 \quad X \]

\[Y = 0.0015 \quad \frac{X}{\sqrt{2}} \]

\[Y = 0.8XZ \]

\[y = \frac{XZ}{w} \]

\[Y = 0.3XZ^2 \]

\[y = \frac{5}{4} \cdot \frac{XZ}{w^2} \]

\[Y = \frac{1}{5} \cdot \frac{XZ}{wp} \]

\[Y = 2kX \]
12 yd	1
96 0Z	2
48hr	3
27km	4
3g.	5
18km	6
8m	7
16 tons	8
12 ft³	9
27yd³	10
7 kg²	11
10 m²	
180	12
720 lb-m²	13
hr²-ft	
14 (m·kg·sec⁻²)	14
15 cm⁵	15
2 kg·sec⁻³	
125ft·lb	16
6ft	17
1020min	18

\[
\left(\frac{y}{x} \right)^{\frac{1}{3}} = \frac{k}{x}, \quad (q) \left(\frac{1}{n} \right)
\]

\[
y = \frac{k}{x}, \quad \frac{1}{x}
\]

\[
y^n
\]

\[
A_2 = 532,500 \text{ tons}
\]

\[
220 \text{ in}^3
\]

\[
L = 16 \cdot \frac{KWH^2}{L}
\]

\[
h_2 = 68.6 \text{ m}
\]

\[
1.263 \text{ ohms}
\]

\[
A_2 = 624.24 \text{ m}^2
\]

\[
22.5 \text{ W} \text{ m}^2
\]

\[
K = 97
\]

\[
q = \frac{1}{k_p}
\]

\[
\frac{1}{u'} = \frac{1}{k} \cdot V
\]

\[
k = \frac{n}{4}
\]

\[
t \approx \sqrt{\frac{t}{p}}
\]
50 moles = 1600 gr. oxygen
888.8 gr

303 gr 15 moles of Neon

11.8 moles

$4.4937 \times 10^{-20} \frac{g}{m^2 \text{sec}^2}$

15.48 g

172,800 Sec

0.1 hr

600 \(\frac{g}{cm} \)

30 \(\frac{mil}{hr} \)

2,160,000 cm²

0.81 \(\frac{ton}{yd^3} \)

150 \(\frac{g}{hr} \)

60 man-days

6.228 \(\frac{L}{hr} \)

180 \(\frac{cg}{ml} \)

5,865,696,000,000 \(\frac{mi}{yr} \)

6,570,000 \(\frac{mi}{yr} \)

1621.8 m/min,

774.5 m³

1638.4 km²

208.13 \(\frac{lb}{ft} \)

\(L = 5m = 500cm \)

\(W = 1250gr \)

1.72 cm, 0.08 cm
فصل أول

جوابات تمارينات متن كتاب أزصفه (3) إلى (18):

<table>
<thead>
<tr>
<th>رقم</th>
<th>جواب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12, 19</td>
</tr>
<tr>
<td>2</td>
<td>0, 1, 19</td>
</tr>
<tr>
<td>3</td>
<td>-6, 0, 19</td>
</tr>
<tr>
<td>4</td>
<td>0, 1, 19</td>
</tr>
<tr>
<td>5</td>
<td>ناقص</td>
</tr>
<tr>
<td>6</td>
<td>ناقص</td>
</tr>
<tr>
<td>7</td>
<td>ناقص</td>
</tr>
<tr>
<td>8</td>
<td>ناقص</td>
</tr>
<tr>
<td>9</td>
<td>ناقص</td>
</tr>
<tr>
<td>10</td>
<td>ناقص</td>
</tr>
<tr>
<td>11</td>
<td>ناقص</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

جوابات تمارينات متن كتاب أزصفه (24) إلى (32):

<table>
<thead>
<tr>
<th>رقم</th>
<th>جواب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8^4</td>
</tr>
<tr>
<td>2</td>
<td>2x^3</td>
</tr>
<tr>
<td>3</td>
<td>(4y)^4</td>
</tr>
<tr>
<td>4</td>
<td>3 - 3 - 3 - 3, or 81</td>
</tr>
<tr>
<td>5</td>
<td>5x * 5x * 5x * 5x, or 625x^4</td>
</tr>
<tr>
<td>6</td>
<td>(-5)(-5)(-5)(-5), or 625</td>
</tr>
<tr>
<td>7</td>
<td>-[5 * 5 * 5 * 5], or -625</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>25y^2</td>
</tr>
<tr>
<td>10</td>
<td>-8x^3</td>
</tr>
<tr>
<td>11</td>
<td>4^{-3}</td>
</tr>
<tr>
<td>12</td>
<td>1/10^4</td>
</tr>
<tr>
<td>13</td>
<td>1/10^4</td>
</tr>
<tr>
<td>14</td>
<td>1/10^4</td>
</tr>
<tr>
<td>15</td>
<td>1/100</td>
</tr>
<tr>
<td>16</td>
<td>1/100</td>
</tr>
<tr>
<td>17</td>
<td>1/100</td>
</tr>
<tr>
<td>18</td>
<td>-10x^{-12}y^2</td>
</tr>
<tr>
<td>19</td>
<td>60y</td>
</tr>
<tr>
<td>20</td>
<td>4^3</td>
</tr>
<tr>
<td>21</td>
<td>5^6</td>
</tr>
<tr>
<td>22</td>
<td>10^{-14}</td>
</tr>
<tr>
<td>23</td>
<td>9^{-6}</td>
</tr>
<tr>
<td>24</td>
<td>2^{-11}</td>
</tr>
<tr>
<td>25</td>
<td>5y^{-1}</td>
</tr>
<tr>
<td>26</td>
<td>-2x^{-3}y^9</td>
</tr>
<tr>
<td>27</td>
<td>3^{49}</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>8^x</td>
</tr>
<tr>
<td>31</td>
<td>16x^{-4}y^4</td>
</tr>
<tr>
<td>32</td>
<td>3^{11}</td>
</tr>
<tr>
<td>33</td>
<td>3^{11}</td>
</tr>
<tr>
<td>34</td>
<td>4.65 \times 10^3</td>
</tr>
<tr>
<td>35</td>
<td>5.789 \times 10^3</td>
</tr>
<tr>
<td>36</td>
<td>1.45 \times 10^{-4}</td>
</tr>
<tr>
<td>37</td>
<td>3.77 \times 10^{-10}</td>
</tr>
<tr>
<td>38</td>
<td>0.0000467</td>
</tr>
<tr>
<td>39</td>
<td>7.894,000,000,000</td>
</tr>
<tr>
<td>40</td>
<td>0.6</td>
</tr>
<tr>
<td>41</td>
<td>x^8</td>
</tr>
<tr>
<td>42</td>
<td>10m^2n^2</td>
</tr>
<tr>
<td>43</td>
<td>\frac{2x^2</td>
</tr>
</tbody>
</table>

جوابات تمارينات متن كتاب أزصفه (29) إلى (33):

<table>
<thead>
<tr>
<th>رقم</th>
<th>جواب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8, 6, 4, 9, 0, 9</td>
</tr>
<tr>
<td>2</td>
<td>2, 4, 5, 6, 0, 6</td>
</tr>
<tr>
<td>3</td>
<td>9x^3y^3 - 2x^3y^3</td>
</tr>
<tr>
<td>4</td>
<td>7xy^2 - 2x^2y^2</td>
</tr>
<tr>
<td>5</td>
<td>3x^4 \sqrt{y} + 2</td>
</tr>
<tr>
<td>6</td>
<td>-4x^3 + 2x^2 - 4x - 3</td>
</tr>
<tr>
<td>7</td>
<td>5p^2 + 4p^2 + 2q^2 - 3q + 3</td>
</tr>
<tr>
<td>8</td>
<td>-[(5x^2l + 4xy^2 + 3x + 6x + 5), -5x^2l + 4xy^2 + 3x - 6x + 5]</td>
</tr>
<tr>
<td>9</td>
<td>-(-3x^2y + 5xy - 7x + 4y + 2), 3x^2y - 5xy + 7x - 4y - 2</td>
</tr>
<tr>
<td>10</td>
<td>8xy^4 - 9xy^4 + 4x^2 + 2y - 7</td>
</tr>
<tr>
<td>11</td>
<td>7x^2y - 9x^2y^3 + 5x^2y^3 - x^2y^2 + 9y</td>
</tr>
</tbody>
</table>

(34)
جوابات تمرينات متن كتاب از صفحة (49)

(1-4)
1. \(3x^3y^2 + 4x^2y^3 - xy^2 + 6y^2\)
2. \(2p^4q^2 + 3p^2q^3 + 3p^2q^2 + 2q^2\)
3. \(2x^2y - 4xy + 3x^3 - 6x\)
4. \(15x^2 - xy - 6y^2\)
5. \(6xy - 2\sqrt{2x} + 3\sqrt{2y} - 2\)
6. \(16x^2 - 40xy + 25y^2\)
7. \(4x^4 + 24x^3y + 36x^2y^2\)
8. \(16x^2 - 49\)
9. \(25x^2y^2 - 4y^2\)
10. \(16y^4 - 3\)
11. \(4x^3 + 12x9 + 9 - 25y^2\)
12. \(25t^3 - 4x^6y^4\)
13. \(x^3 + 3x^2 + 3x + 1\)
14. \(x^3 - 3x^2 + 3x - 1\)
15. \(t^6 - 9t^5b + 27t^4b^3 - 27b^3\)
16. \(8a^2 - 60a^2b + 150a^2b^2 - 125b^2\)

(47) " الجوابات تمرينات متن كتاب از صفحة 59"

(1-5)
1. \(1 6 15 20 15 6 1; 1 7 21 35 35 21 7 1;\)
2. \(a^8 + 9a^6b + 36a^7b^2 + 84a^6b^3 + 126a^5b^4 + 84a^4b^5 + 36a^3b^6 + 9ab^7 + b^8\)
3. \(x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4\)
4. \(128t^7 + 448t^6 + 672t^5 + 560t^4 + 280t^3 + 84t^2 + 14t + 7\)
5. \(x^9 - 9x^8y + 36x^7y^2 - 84x^6y^3 + 126x^5y^4 - 126x^4y^5 + 84x^3y^6 - 36x^2y^7 + 9xy^8 - y^9\)
6. \(40320\)
7. \(362,880\)
8. \(126\)
9. \(28\)
10. \(7\)
11. \(1\)
12. \(56\)
13. \(7\)
14. \(9\)
15. \(1\)
16. \(x^5 + 25x^4b + 250x^3b^2 + 1250x^2b^3 + 3125xb^4 + 3125b^5\)
17. \(x^4 - 4x^3y^2 + 6x^2y^4 - 4xy^6 + y^8\)
18. \(181,440a^4b^9\)
19. \(103,680x^2\)

(46) " الجوابات تمرينات متن كتاب از صفحة 72"

(1-6)
1. \(4x^2y(5x + 3)\)
2. \((p + q)(2x + y + 2)\)
3. \((4x - 3)(x + 5)\)
4. \((x - 4)(x + 4)\)
5. \((5y^2 + 4x)(5y^2 - 4x)\)
6. \((2y^4 + 4x^2)(y - 2x)(y + 2x)\)
7. \((x - \sqrt{3})(x + \sqrt{3})\)
8. \((3y - 5)(3y + 9y)^2\)
9. \((4x + 9y)^2\)
10. \(-3y^2(2x^2 - 5y^2)^2\)
11. \((x + 7)(x - 2)\)
12. \((3x + 2)(x + 1)\)
13. \((2x^2y^3 + 5)(x^2y^3 - 4)\)
14. \((x - 2)(x^2 + 2x + 4)\)
15. \((4 - 0)(16 + 4t + 4)^2\)
16. \((3x + y)(9x^2 - 3xy + y^2)\)
17. \((2m + 50)(4m^2 - 10mt + 25x^2)\)
18. \(2y(4y^2 - 5x^2)(16y^4 + 20x^2y^2 + 25x^4)\)
\[
\begin{align*}
1. \quad & \frac{x^3 - 2x + 3}{x^2} \\
2. \quad & \frac{x^2 + 3x + 2}{x^2 - 2x + 1} \\
3. \quad & \frac{2x^2 + 3x + 1}{x^2 + 2x + 1} \\
4. \quad & \frac{3x^2 - x - 2}{x^2 - 4} \\
5. \quad & \frac{x^3 - 2x^2 + x}{x^2 - 2x + 1} \\
6. \quad & \frac{3x^2 - 2x + 1}{x^2 - 1} \\
7. \quad & \frac{y^2 - 1}{y - 1} \\
8. \quad & \frac{3x - 3y}{x + y} \\
9. \quad & \frac{2a^2 + 2ab}{a - b} \\
10. \quad & \frac{3x^2 + 4x + 2}{x - 5} \\
11. \quad & \frac{2x^2 + 11}{x - 5} \\
12. \quad & \frac{4x^2 - xy + 4y^2}{2(2x - y)(x - y)} \\
13. \quad & \frac{x - 6}{(x + 4)(x + 6)} \\
14. \quad & \frac{1}{a - x} \\
15. \quad & \frac{b + a}{b - a} \\
\end{align*}
\]
جوابات تمرینات متن كتاب از صفه (116) "
1. \(\sqrt{n^3} \) or \(n\sqrt{n} \) 2. \(\frac{1}{\sqrt{y^6}} \) 3. 16 4. \(\frac{1}{4} \)
5. \((5ab)^{4/3}\) or \((5ab)^{\sqrt{5}}\) 6. 8 7. \(a^{2/3}\)
8. \(4^{1/6}\), \((2^4)^{1/6}\) or \(2^{1/3}\) 9. \(5^{1/6}\) or \(5^{\sqrt{5}}\) 10. \(\sqrt{a^3}\) or \(a\sqrt{a}\)
11. \(\frac{1}{\sqrt[3]{x^6}}\) or \(\frac{1}{x\sqrt{x}}\) 12. \(\frac{1}{\sqrt[3]{2^3}} + \frac{1}{\sqrt{2}}\) or \(3 \times \frac{\sqrt[3]{3}}{2}\) 13. \(\sqrt{200}\)
14. \(\sqrt{x^3y^2}\) 15. \(\sqrt{(x+y)}\)

جوابات خلاصة وتكريما رفع اول از صفه (122) "
1. 12, -3, -1, -19, 31, 0 2. 12, 31
3. All except \(\sqrt{7}, \sqrt{10}\) 4. All 5. \(\sqrt{7}, \sqrt{10}\)
6. 0, 12, 31 7. -4 8. -8 9. -5
10. 30, 11 11. -6 12. 153
13. -3000 14. \(-\frac{1}{10}\) 15. \(\frac{3}{4}\)
16. 3,261,000 17. 0.00041
18. \(1.432 \times 10^{-2}\) 19. \(4.321 \times 10^4\)
20. \(-14a^{-2}b^7\) 21. \(6x^3y^{-6}z^6\) 22. 3
23. \(-2\) 24. \(\frac{b}{a}\) 25. \(\frac{x+y}{xy}\)
26. -4
27. \(25x^4 - 10x^2\sqrt{2} + 2\) 28. \([1.8]\) 13 \(\sqrt{5}\)
29. \(x^3 + t^3\) 30. \([1.4]\) \(125a^3 + 200a^2b + 240ab^2 + 64b^3\)
31. \(8x^4 - 9xy^2 + 4x^2 + 2y - 7\) 32. \([1.5]\) \(21a^2b^3\)
33. \(x^4 - 8x^3y + 24x^2y^2 - 32xy^3 + 16y^4\)
34. \((x^2 - 3)(x + 2)\)
35. \(3a(2a - 3b^2)(2a + 3b^2)\)
36. \((x + 12)^2\) 37. \([1.6]\) \(x(9x - 1)(x + 4)\)
38. \((2x - 1)(4x^2 + 2x + 1)\)
39. \((3x^2 + 5y^2)(9x^4 - 15x^2y^2 + 25y^4)\)
40. \(y^3, \sqrt[3]{y}\) 41. \(\sqrt{(a + b)^2}\) 42. \(\sqrt{b}\)
43. \(-\frac{m^4n^2}{3}\) 44. 3 45. \(\frac{x - 5}{(x + 3)(x + 5)}\)
46. \(\frac{x - 2\sqrt{xy} + y}{x - y}\) 47. Inverses (+)
48. Distributive 49. Associative (x)
50. Commutative (x) 51. \([1.4]\) \(x^2n + 6x^4 - 40\)
52. \(t^2a + 2 + t^{-2a}\) 53. \(y^2b - z^2c\)
54. \(a^3n^3b^m + 3a^n y^2m - b^{3m}\) 55. \((y^n + 8)^2\)
56. \((x^2 - 7)(x^2 + 4)\)
57. \(m^n(m^n - 1)(m^{2n} + m^n + 1)\)
58. \(\frac{2x^5}{(n + 1)^3}\) 59. \(\frac{(n - 1)(n - 2)(n - 3)(n - 4)}{24}\)

(\(\sqrt{-y}\))
فصل دوم

إحصاءات تمرينات متن كتاب إزحفه

(127)

2-1

1. {9} 2. {0, -1} 3. $\frac{3}{7}$ 4. $\frac{12}{5}$ 5. $-\frac{19}{4}$ 6. \emptyset 7. \emptyset
8. {7, -3} 9. {5, -4} 10. {0, 5} 11. {0, -1}
12. {0, -1, 4} 13. {1, -1, -3} 14. $\{x | x > \frac{1}{2}\}$
15. $\{y | \frac{1}{3} < y\}$ 16. $\{x | x < 5\}$ 17. $\{x | x > \frac{3}{2}\}$
18. $\{y | y < -7\}$ 19. $\{x | x^2 = 5\}$ 20. $\{x | x > 2\}$
21. $\{x | x > -3\}$ 22. $\{x | \frac{1}{3} > x\}$

(142)

2-2

1. $\sqrt{2}$ 2. -3 3. \mathbb{R} 4. \mathbb{R} 5. \mathbb{R} 6. \emptyset
7. Add $5x^2$. 8. Add $-5x^2$. 9. \emptyset 10. \emptyset 11. {6}
12. {4} 13. {6, -6} 14. {6}

(143)

2-3

1. $F = \frac{3C + 32}{2}$ 2. $r_2 = \frac{R_{r_1}}{r_1 - R}$ 3. 18% 4. 57 5. 27
6. 2600 7. 2565.78 8. 2637.93
10. 36 km/h 11. 375 km
13. 24 hr

(149)

2-4

1. $\sqrt{6}$ 2. $-i\sqrt{10}$ 3. $2i$ 4. $-5i$ 5. $-\sqrt{10}$
6. $\sqrt{11}$ 7. $i\sqrt{7}$ 8. $7i$ 9. $-3i$ 10. $(\sqrt{17} + 3)i$ 11. i
12. -1 13. $-i$ 14. $12 + i$ 15. $5 - i$ 16. $2 + 14i$
17. 8 18. $-6 + 8i$ 19. $3i$ 20. $(x + 2i)(x - 2i)$
21. $(3 + yi)(3 - yi)$ 22. $\frac{4}{5}$ 23. $x = -1, y = 2$
24. $7 - 2i$ 25. $6 + 4i$ 26. $5i$ 27. $-3i$ 28. -3
29. 8 30. $\frac{3}{13} + \frac{7}{13}i$ 31. $\frac{4}{13} + \frac{7}{13}i$ 32. $\frac{1}{3 + 4i}$ 33. $\frac{3 - 4}{25}$
33. $2 + 5i$

(150)
(2-5)

1. $\pm \sqrt{3} \quad 2. 0 \quad 3. \pm \sqrt{\frac{\pi}{3}} \quad 4. \pm \sqrt{\frac{n}{m}} \quad 5. \pm \sqrt{\frac{2}{2}} i$

6. $-4 \pm \sqrt{7} \quad 7. 5 \pm \sqrt{3} \quad 8. -3, -7 \quad 9. 4, (x+2)^2$

10. $9, (x-3)^2 \quad 11. \frac{x^2}{2}, (x+\frac{1}{2})^2 \quad 12. \frac{5}{2}, (x-\frac{1}{2})^2$

13. $\alpha, (x+\frac{1}{2})^2 \quad 14. \frac{1}{2}, (x-\frac{1}{2})^2 \quad 15. -2 \pm \sqrt{7}$

16. 4, 2 \quad 17. 2, 3 \quad 18. $-1 \pm \frac{\sqrt{7}}{2} \quad 19. -1, i$

20. $\frac{1}{2}, -4 \quad 21. 4 \pm \frac{\sqrt{31}}{5} \quad 22. 1 \pm \frac{i \sqrt{7}}{2} \quad 23. \frac{\sqrt{2}}{2}$

24. $\frac{1}{2}, -4 \quad 25. \frac{1}{2}, -4 \quad 26. 3x^2 + 7x - 20 = 0$

27. $x^2 + 25 = 0 \quad 28. x^2 + \sqrt{2}x - 4 = 0$

(2-6)

1. $r = \frac{3V}{\pi h} \quad 2. i = \frac{-v_0 + \sqrt{v_0^2 + 64s}}{32} \quad 3. 18.75\%$

4. $12 - 2 \sqrt{22} \approx 2.619 \text{ ft}$

5. (a) 4.33 sec; (b) 1.87 sec; (c) 44.9 m

(2-7)

1. $1.2^2 \quad 2. 4 \quad 3. \frac{17}{3} \quad 4. 5 \quad 5. b = \sqrt{\frac{a^2}{A^2 - 1} \quad \frac{b}{\sqrt{A^2 - 1}}}$

(2-8)

1. (a) 9; (b) $\sqrt{x} = 12 - x; (12 - x)^2 = x; x = 144 - 24x + x^2$

0 = $x^2 - 25x + 144; 0 = (x-9)(x-16)$

(a) $\frac{\pm \sqrt{5 + \sqrt{3}}}{2}, \pm \sqrt{\frac{5 - \sqrt{3}}{2}} \quad 3. \pm \sqrt{3}, 0 \quad 4. 125, -8$

5. $\pm i \sqrt{3}, \pm 2 \quad 6. 350.63 \text{ ft}$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$y = 160x$</td>
<td>2</td>
<td>4.5 kg</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>176,250 tons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$y = \frac{6.4}{x}$</td>
<td>6</td>
<td>7.5 hr</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$y = 3x^2$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\frac{W_2}{W_1} = \frac{d_2^2}{d_1^2}$</td>
<td>10</td>
<td>$y = \frac{9}{x^2}$</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$y = 7xz$</td>
<td>13</td>
<td>$y = 7\frac{xz}{w^2}$</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>(a) 128 lb; (b) 4000 mi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18,600 $\frac{m}{sec}$</td>
<td>2</td>
<td>0.5 $\frac{m}{sec}$</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{22}{3}\ kg$</td>
<td>5</td>
<td>$105\ \frac{cm}{sec}$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12 yd</td>
<td>7</td>
<td>80 oz</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>11.25 $\frac{\text{in.-lb}}{\text{hr}^2}$</td>
<td>10</td>
<td>$4\ \frac{\text{lb}^2}{\text{m}^3}$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1224 in.</td>
<td>12</td>
<td>58,080 ft</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>20 yd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>36.96 km</td>
<td>16</td>
<td>100 hr</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>0.36 m^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>$50\ \frac{g}{\text{cm}^3}$</td>
<td>20</td>
<td>$300\ \frac{g}{\text{hr}}$</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

 College Algebra, Addison-wesley Pub. Co. 1988

3. Arthur D. Karames, Fundamentals of Technical
 Mathematics with Calculus, Gregg Division, Mcgraw-
 Hill Book Co., 1984

BASIC ALGEBRA

Prepared & Translated by
Engineer N.M. Karyar

MANPOWER TRAINING PROGRAM

November 1991