CONTENTS

CHAPTER — I
GENERAL INFORMATION

Introduction ... 1
Itinerary .. 3
Physical Geography .. 6
Population & Demography .. 9
Local Administration .. 11

CHAPTER II
AREA ECONOMY
Public Economic Sources 14
Bazaar & Labour force .. 16
The Opium poppy .. 21
Opium Background ... 22
Social Analysis of opium
Cultivation ... 25
Conclusion .. 28

The Local Shurâ's Declaration on opium Cultivation 30-A
Past Review ... 31
Local council(Shura) ... 35
Emergency food Distribution 43
The Shura Declaration about Wheat Distribution 48
Distribution of Seed Wheat 51

CHAPTER—III
PROJECTS EVALUATION
Projects Administration ... 57
Norms for Management ... 61
Income Generative Agricultural Projects

Introduction..63
The Nicha Well...66
Technical Survey...66
Technical & construction Works...........................70
The Zobair Well..78
Technical Survey (A)..80
Level (B)...81
Underground Water Sources (C)............................79
Technical Works...83
Cultivation..84
The Kani–Manda Agricultural Land.......................91
Problem & Future Plan.......................................97
The Kajaki Hydro Electric Power Station................100
The kajaki Bridge...104
Health Programme..106
Local Dispensaries..107
Research..108
Educational Programme.....................................116
The shura declaration on educational programme.........118
Photos...120-125
Map focused on Helmand province
CHAPTER I

General Information
INTRODUCTION

Islamic Aid Health Centre (IAHC) has established for the first time its medical project in the northern Helmand, Mosa-Qala District.

From 1986 to 1990 IAHC has trained totally 21 med-level health workers in its Medical Training Course (MTC), for Helmand Medical Project. At present IAHC supports totally 76 persons staff in the fields of medicine, education and agriculture in this province. They are generally active in the hospitals such as Kani-Manda, Kajaki, Char-Bagh and in income generative agricultural project as well as educational project.

Thus IAHC supports 21 local First Aid dispensaries in faraway villages.

In 1989 IAHC started its immunization programme including BCG and Measles in northern Helmand run by the MTC graduates. This programme developed into EPI in 1991. Besides, IAHC started the T.B. programme in 1989.

The educational programme was started in 1986 with the cooperation of the local people. It was based on primary education. At present there are about 12000 students taking advantages of education in the IAHC supported schools.

By 1989, in order to make the project self-supported by means of agricultural products and propagating cultivation based upon using water pumps, IAHC committed efforts to establish the Income Generative Agricultural Project.
For the time being, the project has two deep wells sunk and are active in flowing water.

In mid 1989 Dr. Alistair Lipp took a trip to Helmand for six months as IAHC Project Supervisor. He assessed all the projects and his report has been distributed to those who were interested in.

In 1990, in order to support the farmers and enable them to stop the cultivation of opium, IAHC dispatched seed wheat to the area for seeding.

Thus at the beginning of this year (1991), IAHC sent wheat to be consumed as food. This assistance was dispatched in order to preserve the area people from famine.

On January 1991, a mission was sent back to Helmand which was headed by Eng. M. Rabi Amaj (technical and agricultural supervisor), to supervise the process of wheat distribution. This monitor mission provided this report from the area, with the full cooperation of the IAHC projects workers inside Helmand. Therefore we're sending a copy of the mission's report for your interest.

IAHC gratefully acknowledge the efforts of the mission members for gathering and obtaining sufficient information about the area. Thus I appreciate Mr. Mohd Saeed's efforts who has translated this report into English.

We'd like to draw the attention of readers to the fact that the report is written by people whose first language is not English. Therefore we would appreciate your comments in this regard.

Dr. Haqani
Director IAHC.
ITINERARY:

The days of our journey are coincide with dispatching the assistance to the area. On Tuesday 8th, Jan 91 in the early morning we (Eng. M. Rabi Amaj, H. M. Qasim with some of the IAHC health workers in Helmand) left Quetta and drove toward northern Balochistan until we reached Chaman. We stayed a night at the Helmand Mujahideen Office in Chaman. The next day after arranging transport for the wheat, we left at 12 am with a pick-up Toyota and started our journey toward Helmand. Driving 7 hours, we approached Wandoz. Here we prayed together but set forth and drove toward north of Kandahar. It was 12 pm midnight when we reached Khoja-Mulk Bazaar. We did not rest here and drove again until we arrived Bom Village. It was 3 am. Here after getting tired, we rested up to the next morning. On the morning of 10 Jan we set forth and drove up to 11 am and consequently reached Tangee-Bagh-e-Mehrab. From here we went to Sangin Bazaar in order to buy stoves for the Kani-Manda Hospital. We did. Then after having lunch, we left here at 3 pm, for Mosa-Qala. After passing a way of 120 Kms we got in Mosa-Qala District when it was 7:20 pm. Our accommodation was arranged in the old clinic.

From the 12 th upto 14th Jan, we called Shura Meetings in order to arrange a better distribution of wheat in the area.

From 15 to 16 Jan a complete plan was made for to survey THE IAHC Project areas.
From 17 to 20 again we called Shura Meeting for delivering the assistance to the area people. And we received the wheat from the UNILOG transport agent.

From the 21st up to the 25th Jan a researching travel was carried out to Char-Bagh and Landi-Kariz in order to know about the level of destruction of karizes and consulting with local experienced people about reconstruction of the karizes.

From 26 up to the 1st Feb we tried to collect information about the result of 100 Mt seed wheat which was sent last year (1990).

On the 2nd Feb we traveled to Deh-Bata area, to know about the impact of seed wheat distribution (of the 100 Mt) and its cultivation. Also to visit the opium field in the area.

From 3 up to 5 Feb the Naicha well was visited and its techeometrical mapping was studied with its geometrical particularities.

On 6th Feb a one day journey was performed to K., for the purpose of understanding clearly about the scale of opium's as well as wheat's cultivations.

From the 7th up to 10th of Feb, the four days were spent generally on mapping of the Zobair well, its technical and economic accountings, and it was studied from logical points of view.

On the 11th Feb the techeometrical mapping of Kan agricultural field, was performed.
From 12th upto 14th Feb, during two travels to Kajaki, we did some activities such as surveying the Kajaki Bridge, visiting the Kajaki Electricity Producing Factory and know about its requirements, and also we visited the IAHC Kajaki Hospital.

From 15 upto 18 Feb we took the stock of Kani-Manda & Char-Bagh Hospitals. Then we called a Shura meeting to assess the project workers' work system as whole and the defects of the works either in the clinics or in the other projects were pointed out and criticized.

Meanwhile some agreements were also made by both sides for the improvements of projects works.

On the 19th Feb we left Mosa-Qala for Quetta and drove on the same way and safely reached Quetta on the 21st of Feb 1991.

We indeed got good impression from local people and fully cooperated with us during IAHC Mission's survey in the project areas.

Eng. M. Rabi Amaj
IAHC A&T Supervisor.
PHYSICAL GEOGRAPHY

Helmand where IAHC's Projects are located, is a southwestern Province of Afghanistan. It has a form of a rectangle that is stretched from north to south; 400 kms long and has a middle breadth of 154 kms.

Physical form of Helmand is similar to a steep slope that is extended from north east to south west.

The highest point from the sea level is in Baghran that is 2000 meters, far northern part of this province. The lowest part is 692 meters above the sea level, located in Khwaaja Ali, south of Helmand.

Its morphological form is a combination of large dry elements (geosyncline & platform). Northern areas such as Zamindawar and Mosa Qala are mountainous. But the rest areas are comparatively flat and even.

Sandy areas lie south and eastern part of the river. But the fertile and arable lands are stretched from north to north west of the Helmand River.

The arable deserts are generally consist of flat lands and hills which are relatively higher. The soil of these deserts are very suitable for cultivation.

Sometimes, it has a climate of subtropical and has monsoonal winds. There is snow up to the height of 1500 to 2000 meters above the sea level.
While in the lower parts it has rains all the seasons. The average rainfall in the province is 67.7 mm a year.

The hottest weather in June is 42.4°C, while the coldest temperature in the month of December was -0.9°C , (Louis Dupree 1966). This year (1991) the temperature on Feb 15th, was -2°C, and the total rainfall from Dec to March reached to 70 mm. It was unprecedented within the last 40 years. This caused heavy floods, consequently brought losses of life and property. Thousands of jeribes of agricultural land have converted into ruins.

Helmand’s major river is called "Helmand Rod", that is an important source for irrigation (we will explain this theme later on).

Mountainous areas, except for Baghran, lack any wild bushes and trees. Also the deserts have not grown the bushes. The area soil is good. After the rainfalls, grass is available. The existence of grass, provides good opportunity for keeping livestock. It would be better to mention that the breeding of the livestock is growing rapidly. In this province, there are more than 100,000 sheep and goats.

The agriculture is the main business of the area and varieties of plants being cultivated, such as wheat, barley, cotton and others. The agricultural growth is extensive both from quantitative and qualitative points of views. Both kinds of lalmi and irrigated farming are common in the area. The vegetables are also being

1-Louis Dupree-Afghanistan 1966
planted that majorly consumed by local people while little amount is brought to the local markets.

Gardens are well developing in the area. Their major products are: almonds, pomegranates, apricot, fig, peach etc. Among them, Nowzad's megranates are famous and has good markets in Afghanistan and outside.

The ancient vestiges of this province are Qala-e-Bust of Lashkar Gah from Ghaznavi era, and Karor City located in Zamindawar (Kajaki); the homeland of the second great Pashto poet.
According to the formal census of 1981 the number of Helmand's population was 542000 people. But the eyewitnesses said that on the time when the enumeration was taking place, in many areas people were afraid of taxes or not given the number of female to the census workers (culturally difficult tasks), were the problem-ss caused not to be relied on the census. Even in some areas like Baghran no one of the census workers had gone to that area (these facts were stated by elder members in the shura).

According to the population, this province is coming in the 8th position. Quantitatively the population has not been changed yet. But on the contrary has grown rapidly. Comparatively people have not moved to Pakistan or elsewhere, as the other provinces' people did.

According to the IAHC Mission, which has studied the growth rate of the population estimatedly, that was about 3 to 3.5% a year. It majorly consists of Durani Pushto tribes and some migrants from other provinces which are called "Nakilin". They have settled south of Helmand and each family has 30 jeribes land, given by former governments. The immigrants had come from Logar, Wardag, Laghman, Jalal Abad and other areas. Now, they have been absorbed in local culture.

Helmand's population is also combined of some nomads of Ghilgee tribes. They are completely involved in

1-Louis Dupree Afghanistan.
livestock business. They, as usual do not settle permanently in one area. Because of animals and not having facilities, in winter they move to torrid zones, but in summer to cold regions.

Thus, it has a population of Parsi speaking people as well which is called "Taimany". They are generally involved in horse breeding and other livestock keeping. They have come from Badghis province. And some of them from Ghor, Herat and other areas. Their life-style is similar to that of nomads.

Father is everything in the families, here. He has been kept the family centralism. So it can be called Patriarchy system. There are families which their number reach to 52 persons. No one can be separated from such families.

Except the war cause, the mortality rate in the area, over 15 years of age, is very low. On the contrary, the mortality rate of the children between 0 to 5 year is very high.

The average number (45.29%) of families is consisted of children between 15 years of age.

The relativity between women and men could not be learned because of customs, common in the area. Therefore we dispense with it.
THE LOCAL ADMINISTRATION

The Helmand Province according to the past divisions has 12 districts. Its population has been estimated about 731700 people. Around 87% of this province is under the control of the Amir's mujahideen. And there are about 430,000 people living under the auspices of the Amir.

The following are the areas under the control of the Amir's mujahideen:

- Mosa-Qala
- Kajaki
- 1/3 of Baghran
- Hazarjuft
- Sangin
- Nawzad
- Deh Rawod
- Parts of Chora and Nish of Oruzgan

- Parts of Gulistan of Farah.
- Parts of Passaband of Ghor Province.
- 3/4 parts of Grishk and Lashkar-Gah.

And a group is active in Mahala Jat, in Kandahar. Systematically his influence and power are getting day by day wider. Daily other groups of mujahideen Join his units. For the other groups, if they join the Amir's units, they will be free for collecting taxes or other supports of that area people. Such joined groups are also being supported from the Amir's administration. The groups which give in by force, have no such opportunities. In their areas the mujahideen of the Amir have duties to go there, by turn.

There are maddrassas (schools) with hostels, from where
the administration send the adult students to the war zones.

From the mentioned districts, the Amir adminis. collect different kinds of taxes. The mullahs receive Oshri, the tenth part of the harvest, especially on the first day of the Eid. The Oshri can also be in kind. For each jeribe, the owner should pay 0.375 kg of opium. Thus, the wheat taxes and their amounts, determined by admin. are also being collected and consumed by that areas' mujahideen.

Cash taxes of top quality land reached to 500 Afghanis per jeribe. It also includes the vehicles owners, leaseholders, and so on. For example in 1990, wheat tax per jeribe of top quality land was 52.5 kgs; 48 kgs from the lower kind; 13.67 kgs barley per jeribe of top quality and 12 kgs from lower kind.

Going and coming of the passengers, is free. No one is threatened or robbed either in the houses or as passengers outside. Other groups of mujahideen can easily move everywhere with their arms, money etc. The businessmen, tradesmen upto the smugglers are free in their own activities. Therefore, the local stores are well-stocked and the commodities are cheaper than those of other provinces.

The advantage of this situation in Helmand, as I felt, might be that no anarchy exists there. All the families live with no fears of hostilities, robberies, etc. Two enemies can not dare to act independently, unless one of them is of high authority.
The illiteracy rate in the area is incredibly high. This causes many silly customs to emerge. And such customs as a routin enter the minds of the people. They will remain for long, unless a very central government come in real force. That government in a free atmosphere might be able to create totally other conditions. Under these conditions (educational, trainings and other activities) people will adapt and be changed.

It is important to mention that any prince or laws ruled in Helmand, is a symbol of ideology and customs.

Note: Amir is a religious title in Muslims, here The Amir's real name is Haji Mohd Rasol Akhundzada. He is older brother of martyre Haji Mohd Nasim Akhundzada.
PUBLIC ECONOMIC SOURCES:

Helmand is mainly reputed as an agricultural province. Abundance of water is the main factor for the province to be called an agricultural state. In the flowing pages you will find that the most of this has been used in the southern part of the province. In the upper and northern Helmand only the power station has been built in an area called Kajaki. In fact the water has not been used for irrigation in the northern Helmand, however, there exist plane deserts that are possibly able to take water from this river for being cultivated. These deserts and partly mountains and hills have served a good base for stock breeding, which forms a particular factor of economy in northern Helmand.

Since a market is another example of economic sources for local and imported materials, the two productions (local & imported) repose against each other. Because of the low rate of local production which cause rising inflation the market is changed for the benefit of imported materials. This condition reinforces private wealth.

Craftsmanship is another source of economy in the area which gains position from day to day. Because during the past 12 years of war most of the craftsmen moved from their original residence, or some of them were deflated. Now after the withdrawal of Soviet and that of Afghan troops to their defensive localities, the people have started to repair and rebuild the ruins resulted from the war during past 12 years.
CHAPTER II

Area economy
Transportation is counted another source of economy which has had a good reputation, and income. After all, agriculture farms the most important factor of economy. Since inflation has caused for the land products not to satisfy the needs of a family and since value of marketing of some products especially cotton has declined very much, most people have now attempted to opium poppy cultivation, which has caused numerous and even the most dangerous problems in the area.

(opium poppy cultivation with all its particulars is described in a separate title.).
BAZAAR AND LABOUR FORCE

Helmand is bordering with 5 provinces as well as with Baluchistan, Pakistan. Except Grishk and Lashkar-Gah, the entire province is in the control of mujahideen.

Transportation for goods coming from Iran and Pakistan has developed very good. The goods shifted from Pak. to the north west provinces, being carried through this province. Also the goods coming from Iran such as oils, machinaries and other equipment are transported through this province.

The Kandahar-Herat Highway passes at a length of 150 Kms through it. Some part of this highway is in the control of the Kabul Government.

Other network of the roads exist as well. A road starts from northern Helmand (Tangi-Bagh-e-Mehrab) and is prolonged to Baghran and finally to Pasaband. It also passes through Kajaki and Mosa-Qala. This way is mostly used for transportation, by mujahideen. It is 170 kms long, but not paved.

Other road coming from Gird-e-Jungle (Baluchistan) and stretched to the northern part of this province. It is 380 kms long.

Along side of the roads, many bazaars have been developed which have many clients. They are: the Sangin bazaar, the Kajaki bazaar, the Mosa-Qala bazaar and other.
The Sangin bazaar, located north to the intersection of Mosa-Qala and Helmand Rivers. This bazaar is in the control of Mujahideen, and is free of any price lists and everything can be sold, including arms.

The Mosa-Qala Bazaar is in the second position. Thus, every district which has been liberated by mujahideen, have good bazaars.

In Mosa-Qala and Kajaki Bazaars the Amir Administration has announced ban on the selling of cigarette, arms and some other items.

All kinds of commodities are available for the local residents and mujahideen. Lots of cafes and restaurants are there for outsiders.

Butcheries have also developed and they sell only the mutton, not beef.

Medical stores are very active and medicines of Pak., Afghanistan, Iran and Indian made are available.

The occupations such as carpentry, black-smith's trade, repairing workshops for vehicles, motorcycles, w.pumps, bicycles and others are gradually being developed.

Shops are well stocked and items such as wheat, flour, ghee, tea, sugar, rice and other are available. Most of them are imported from Pakistan. Local products are being carried to the markets such as raisin, corn, okra, (dried and fresh), tomatoes, meat, egg, rice, cotton of southern Helmand, etc.
The Helmand vegetables are mainly okra, potato, tomato, vegetable, cassava, carrot and gandana.

Fishing along the Helmand River is also a good business from economic point of views, for the local people. Certain river side has been given to each lease-holder for a year by mujahideen court.

Fire wood has market, especially in the winter. Animals trade has also good earnings. Its trade has determined days for selling animals (Mondays & Thursdays). Here sometimes some horse racing also take place.

Prices of the commodities fluctuate according to the political, economic, geographical and seasonal causes.

Lack of the gold backing of Afghans, results in higher exchange rates of Pak Rupees, Dollars, Rials, and other currencies, against Afghans.

The goods being transported from Kabul, Herat, Kandahar, Lashkar-Gah etc, the merchants or tradesmen should pay either to the mujahideen groups, government guards, some charges or bribes. This has also role in making prices to be raised.

Labour forces in Helmand reaches to about 80,000 persons. But unfortunately, the demand's rate is unprecedently lower. Agricultural lands are limited and are waterless. For local products, local market is not that much developed to absorb all these labourers. But still the agriculture is the main source of their employment. It has two kinds of occupation. Firstly, the works of
irrigations, tilling and harvesting. Secondly, constructing activities like cleaning canals, sewers (karizes) digging karizes, avoiding flood damages, and rebuilding of destroyed places.

In winter the labourers can hardly find works. But in summer most of them are employed for long and short periods.

For the better understanding, the following table has been prepared for laborers' wages in different sectors. And on the next page, the price list of the commodities common in Mosa-Qala and other areas, is provided for the readers interested in.

Table (1)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Work Unit</th>
<th>Salary (Afg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digging sewer</td>
<td>1x1.25x0.5 M³</td>
<td>5000</td>
</tr>
<tr>
<td>" in soft soil</td>
<td>"</td>
<td>7000 to 7500</td>
</tr>
<tr>
<td>" in hard soil</td>
<td>"</td>
<td>7000 to 8000</td>
</tr>
<tr>
<td>" of even place</td>
<td>1 m³</td>
<td>750</td>
</tr>
<tr>
<td>Digging upto 20 dep</td>
<td>1 m³</td>
<td>2000</td>
</tr>
<tr>
<td>Daily labourer</td>
<td>per day</td>
<td>1000</td>
</tr>
<tr>
<td>Porter</td>
<td>to port one bag to truck</td>
<td>20</td>
</tr>
<tr>
<td>Carpenting without wood</td>
<td>1 m²</td>
<td>500</td>
</tr>
<tr>
<td>" with wood</td>
<td>"</td>
<td>6600</td>
</tr>
<tr>
<td>Mason with lunch</td>
<td>per day</td>
<td>2000</td>
</tr>
<tr>
<td>Mud Plaster "</td>
<td>per day</td>
<td>3000</td>
</tr>
<tr>
<td>Brick laying "</td>
<td>1000 bricks</td>
<td>1200</td>
</tr>
</tbody>
</table>
Table (2) for the current commodities prices:

<table>
<thead>
<tr>
<th>No.</th>
<th>Commodities</th>
<th>Unit</th>
<th>Price (Afg.)</th>
<th>No.</th>
<th>Commodities</th>
<th>Unit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flour</td>
<td>4.375 kg</td>
<td>550</td>
<td>16</td>
<td>Wheat</td>
<td>4.375 kg</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>Bread (Loaf)</td>
<td>175 gr</td>
<td>40</td>
<td>17</td>
<td>Match Pak made</td>
<td>one box</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>Batter YT-1</td>
<td>a pai</td>
<td>600</td>
<td>18</td>
<td>Match USSR made</td>
<td>"</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>" UM-3</td>
<td>"</td>
<td>290</td>
<td>19</td>
<td>Petrol</td>
<td>one gall</td>
<td>1700</td>
</tr>
<tr>
<td>5</td>
<td>Ghee</td>
<td>16 kgs</td>
<td>10700</td>
<td>20</td>
<td>Corn</td>
<td>4.37</td>
<td>280</td>
</tr>
<tr>
<td>6</td>
<td>Ghee</td>
<td>5 kgs</td>
<td>3200</td>
<td>21</td>
<td>Dry Okra</td>
<td>4.37</td>
<td>3000</td>
</tr>
<tr>
<td>7</td>
<td>Sugar</td>
<td>4.375 kg</td>
<td>1750</td>
<td>22</td>
<td>Chicken</td>
<td>2 kg</td>
<td>2500</td>
</tr>
<tr>
<td>8</td>
<td>Black Tea</td>
<td>110 gr</td>
<td>300</td>
<td>23</td>
<td>EGG</td>
<td>a pc</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Green Tea</td>
<td>110 gr</td>
<td>240</td>
<td>24</td>
<td>Mutton</td>
<td>4.37</td>
<td>5000</td>
</tr>
<tr>
<td>10</td>
<td>Rice</td>
<td>4.375 kg</td>
<td>1800</td>
<td>25</td>
<td>Beef</td>
<td>" kg</td>
<td>3500</td>
</tr>
<tr>
<td>11</td>
<td>Onion</td>
<td>4.375 kg</td>
<td>1200</td>
<td>26</td>
<td>Fire wood</td>
<td>" kg</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>Potato</td>
<td>" kg</td>
<td>700</td>
<td>27</td>
<td>Cement</td>
<td>one bag</td>
<td>450</td>
</tr>
<tr>
<td>13</td>
<td>Washing Soap</td>
<td>one piece</td>
<td>120</td>
<td>28</td>
<td>Iron Shovel</td>
<td>one pc.</td>
<td>1600</td>
</tr>
<tr>
<td>14</td>
<td>Diesel</td>
<td>one barr</td>
<td>45000</td>
<td>29</td>
<td>Gear Oil</td>
<td>one gall</td>
<td>6000</td>
</tr>
<tr>
<td>15</td>
<td>Kerosene</td>
<td>one gall</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The prices have been surveyed on 10th Feb. 1991 in Mosa-Qala Bazaar.
THE OPIUM POPPY

The dried juice obtained from the seed capsule of the opium poppy, Pupsaver somniferum, which grows best in warm and subtropical regions. Opium is extracted from the latex of the plant, which oozes from notches made in the half-ripened capsule.

The average height of the plant reaches to 120 cms. It needs less water and less fertilizer. Opium poppy has high degree of ecological adoption. Its economical aspect, easiness in cultivation and having outside market, encouraged the farmers to cultivate it. Besides, other plants such as corn can be seeded too. Melon-bed or kitchen garden has also been used beside the opium poppy. Other advantage of this plant is that it ripens very soon.

The opium's cultivation is taking place in the areas such as Mosa-Qala, Nowzad, Kajaki, Sangin, Grishk and Baghran in Helmand; Khakriz, Arghandab and Ghorak in Kundahar; Dehrawod in Oruzgan; Kama, Shinwar and Lalpure in Ningarhar, etc.

There is no exact census of the lands devoted to the poppy. But according to the taxes which have been collected by mujahideen, we can make an estimation. Of all the lands 2/3 are devoted to the opium. For example, the 1989's tax which is 1/20 or 5% from the Mosa-Qala District reached to 13125 kgs opium. So according to this figure of the tax, in this district in 1989 the total production of the opium was 262500 kgs. The average production per jeribe is 16 kgs. It means that around 16406.25 jeribes land is devoted to the cultivation
of opium.

According to the promise of the aid to the area, last year (1990) no jeribe of a land has been cultivated in the Amir's controlled areas. But since this promise was not fulfilled, the area people started its tilling again.

As soon as the Amir administration received IAHC message of 100 MT wheat seed for seeding and following another assistance of 450 MT seed, to be consumed as food, affected on the poppy cultivation. It was not at the same level as it was in 1990. Around 2500 jeribes land remained uncultivated.

OPIUM BACKGROUND

Growing opium poppy had been common for centuries in Asia and perhaps in Europe. And it is not known where it is indigenous to. Generally it has been used for centuries in medicine as a drug for the relief of pain. Although still sometimes given in the form of laudanum (tincture of opium), its main legal uses today include the extraction of its active ingredients - morphine, codeine, papaverine, etc. And preparation of their derivatives (e.g. heroin).

But throughout Afghanistan it has simply been used for sleeping of restless children and those old people who were suffering from cough. The only place where it has been used as narcotics, is Wakhan and Badakhshan.
The opium tilling was very limited and few lands were devoted to it. The adult maddrassas' students were working part time in the poppy fields, in order to support themselves. They were mainly involved in the weeding of the opium's fields, scratching the poppy capsules and collecting latex of the capsules.

Even though the Zahir Shah Government had been announced ban on the poppy tilling, people did not leave the cultivation at all. But during the past 50 years, the governments could prevent the expansion of opium fields. Especially when the Zahir Shah Government allotted the lands in Helmand in a modern system and thousands of jeribes of lands turned to properous fields and as a result the agricultural items' markets developed. This time many people were employed and caused progress. This situation naturally affected on the opium's business.

Unfortunately, after the April's 1978 coup, the normal development process interrupted. The crisis severely hit the economy and caused inflation. The relation between the cities and villages broke off. The irrigation system destroyed. The central authority and power disappeared. This is why the cultivation of opium appeared as a source of earning again. And grew very rapidly during the invasion.

Surprisingly, by 1991, the price of opium per kg reached to 68000 Afg. The whole production of opium of the Mosa-Qala District, was only about 450 MT. For this 4000 hectares land was devoted. The cost of transportation of
one bag (4.375 kg) up to the border, is 1000 Afg. For the time being, (21 Jan) because of the Gulf War, we heard from local people that the price of opium per 4.375 kgs, has fallen down, i.e. from 360000 to 320,000 Afghanis.

In brief, the growth of opium business has two main causes. They are:

A- External Causes, and
B- Internal Causes.

The external causes are the existence of the markets outside the country. The relation of western smugglers with either Pakistani, Afghan or Iranian smugglers.

The Internal causes are the existence of economically ruined country with large number of unemployed population. Moreover, the continuation of war for more than 11 years. The expense of the mujahideen fronts with thousands of groups.
SOCIAL ANALYSIS OF OPIUM'S CULTIVATION

Why people cultivate the opium poppy, the local farmers give different answers. First of all the mujahideen were concerned. The reason is that the mujahideen consumption of bread only in Mosa-Qala and Kajaki Dis. was 315 MT wheat. This amount is prepared by local people in kind to the mujahideen.

From the wheat consumption, we can imagine other items' consumptions. If we consider all the muj. under the Amir's mandate, the mentioned figure should be increased 5 times bigger. This is the cause that the relations between landowners, craftsmen, merchants and the muj. is getting tightened and inevitable. Here, let's know about the local people's problems.
People can not decide themselves about the taxes. While for surviving they trying to find better ways of earning. Daily people are being threatened economically.

After the Amir's announcement of ban on the opium tilling 10% of the local people had nothing to eat. About 50% of them had food for about 6 to 8 months. But 12% of the labourers families left the Amir's controlled areas to find work in Kandahar or elsewhere. The rest either sold their households or were in good conditions.

The outside promises were not fulfilled. The muj. fronts and local people were left in the lurch.

Thus, there are lots of families who have a jerebe (2000 m² in possess. So people actually are suffering from starvation, though billions of Afghans are available. The real cause of starvation is something else. This money has not been invested in economical activities or
sectors. There are machinaries, but who can run them. The different professions are at their lowest level. No technical irrigation system exists. Where it exists, the common cultivations (i.e. cotton) lost their markets. Cotton is also replaced by the opium cultivation. Money is the only thing. For 90% of the commodities are being imported, people should have money.

Because of the inflation the families' consumptions have been raised unprecedentedly. For instance a family with 52 members, has an average consumption of 7.2 million Afg. But to work on the land of themselves or work on the lands of others, a family can earn 2.7 m Afg. The rest of the money can be made of putting land in pledge or borrowing money. Which is led to destroy a family's life. Other cultural problems add to the economical problems. The silly customs of dowry is a heavy burden on the family's economy.

Northern Helmand has kept the old irrigation system (Karizes). With the growing population this amount water is not sufficient at all. This again affected on the cultivation of other plants such as wheat and vegetables. Gardening has not been developed widely or encouraged by agricultural organizations. So in brief the local people had to cultivate opium poppy.

Different classes of the society react on the cultivation of the opium, differently.

Those who are not involved in opium business (for example tradesmen who have influence in the local market), say yes, it is bad, poppy should be forbidden. Such
people make 1% of the population.

Those who are working as labourers and make money from the cultivation, say what they would do then? Of course in case of finding other opportunities, their opinion is flexible.

Those landlords who have devoted their land for poppy say no, they would sustain losses and wouldn't accept it.

The mujahedeen authorities, who receive taxes, their opinion is clear. They collect taxes. It will be very difficult to have this source cut. But they promised in continuation of assistance they will gradually stop it.

A few of opium's addicts were also naturally against the opium's cultivation stoppage.

As much as half of number of the mujahideen themselves seemed to have been against the poppy cultivation. But those who are in favour, give different reasons. One is that, for the continuation of holy war (Jehad), they should be supported and get food, clothes, arms, etc.

Incredibly, no one has been seen to have been addicted of heroin. It is impossible to find addicts of such kinds. It might be because of unconsciously awareness of opium or heroin's destructive causes. Therefore there is no such social effect from the opium's cultivation. I have noticed whenever I started the discussion of opium, I found its dealers ashamed. And they always trying to escape from such discussions.
CONCLUSION:

As it is understood from the discussion of the local sh-ura and opium poppy that the people who cultivate this plant in Helmand is not based on amassing wealth or greediness. But the continuous economic problems exist in the area. There are no other sources of income-generating in a wide range to enable them to earn for upgrading their standard of living.

Almost all local people do agree to stop the opium cultivation, in condition to make available other sources of income. They promised officially to IAHC this matter. In order to know better the facts have its effects in the opium cultivation.

1- There are no plenty of water available, in the north east of this province. But there is a broad desert here. Its lands are suitable for cultivation if the water is made available. From a distance of 15 kms the water can be lifted from the river by w. pumps with a big diametre, run by electricity, in Safid-Hisar area. The works needed for it, to transfer electricity to that distant, installing w. pumps and constructing a pool for supplying water. The rest work, i.e. digging ditches, making fields even, etc will be conducted by the local people themselves.

In this case about 20,000 jeribes land will be irrigated. This was the thing suggested in other way by the area official in the shura which lator IAHC made some adjustments in it. This method costs 20% of the way or method they suggested. The above men-
tioned method requires simple technology. Besides, it needs a special survey to be conducted,

2- A desert called Farhad located in Nowzad Dis. west of Mosa-Qala. It is being irrigated by the tributaries of Mosa-Qala River. It is a seasonal river. According to the statement of the local people if the water is lifted from it in the summer when its level is lower, it would irrigate 12000 hectares. Installing w.pumps on the banks of the river, would help watering the above mentioned lands. If the lands are recultivated, about 2667 families would possess 6 hectares land each. The local people offered their cooperation which will bring the costs almost down to half.

3- In Shah-Raga village south of Mosa-Qala Bazaar, people together requested for the improvement of the irrigation system. Here one field is seeded while the other lay fallow or rests. Because the water is scarce. Underground water can be provided in a depth of 8 metres. It only need w.pumps to be installed. The arable lands will be three times bigger than that of exist now. Here also people promised that the rest work will be done by themselves. The only cost by the organization will be purchasing w.pumps. Their promise is written, and here we brought a copy of that with its translation presented on the next page.

4- Dispatching fertilized seed wheat to the area has a great effect on the cultivation of opium. It should be conducted in fall season. The more the seed is sent, the more it would occupy the opium land.
5- The Kajaki Bridge has been damaged. It is not able to sustain more than 5 MT load. The heavy loaded trucks unload the goods and ship them by tractors several times. This interrupted the business growth here. It can be repaired and made strong enough to resist against heavy loads. A special survey is needed for it.

6- The Kajaki electricity producing factory is faced with lack of two pieces of spare parts, 8 pieces of 16 M.W. turbine rotors and the coils of the central control of factory. It is really a threat to the factory. The spare parts are not available in bazaar. Despite several requests of the local officials, no one has yet took it into serious consideration.

(For more information see The kajaki Hydro-Electric Power Station)

1_ Mega Watt
The local Shura's declaration on Opium Cultivation.

To: Dr. Haqani

Respected Sir,

WE have such kinds of lands that cultivate them after every three years and even after four and five years; just only for one season. Because the water is scarce here. Since the underground water is very close to the surface (i.e. 7 to 8 metres). Therefore we kindly request you to provide us with pumps for lifting water from the wells. In this case we will never cultivate opium in our area.

Shura Members.
Dr. Alistair Lipp took a trip to Helmand province in 1989. The following are some of his remarks about the opium and hashish cultivation after his first observation, he describes them as below:

"North Helmand has acquired a bad reputation for growing the opium poppy, and the Amir for masterminding the entire operation.

Certainly North Helmand grows opium poppies. One local farmer suggested that between 5 to 10 of the available land was allocated to the poppy. However, reports from expatriates who have visited the area in the flowering season report seeing many fields of poppies, and other farmers when describing the scenery when the poppies are in flower, suggest that considerably more than 10% of the land is used for the opium poppy.

To be fair to the Amir, it is not only he grows the poppy (he has very little land), but everybody. He gets given 10% of the proceeds as Zakat (Islamic tax). Apparently, farmers get approached by representative of another mujahideen party and are commissioned to grow the poppy. The resin is collected and driven to a village called Baghnay on the Afghanistan, Pakistan

* * * * * * * *
1- The writer means Rabat not Baghnay a village in north eastern Helmand. He has used the name by mistake.

and Iranian border for processing into Heroin

To continue his report, lator he says:

"IAHC strongly disapproves of the cultivation and marketing of opium products. It has been explained and made clear to all IAHC field staff, that any inputs into the area must not contribute to the production of opium products. IAHC field staff understand that if such inputs are misused, that further assistance cannot be given.

IAHC has involved itself in reducing the amount of opium grown. The director of IAHC, in his meeting with the Amir in Quetta in August 1989 spelt out his opposition to opium cultivation. The Amir also had meetings in Islamabad with other international agencies, where presumably he received similar messages of disapproval.

In September, the court of administration in Mosa-Qala banned the growing of both opium and hashish. Physical punishment can be expected by anybody who contravenes the new ruling.

IAHC field staff have subsequently arranged public meetings in many villages. I was present at 15 of these, in various parts of the area, in which the subject of the opium poppy was vigourously debated. The field staff were able to confirm the ban on cultivation and explain the reasoning behind it. Discussing this with farmers afterwards, I was left with the impression that they definitely expected to be punished if they contravened the ban. A common belief was that a hand and foot would
be cut off as punishment.

No policy of crop substitution was adopted, but most people expect to grow wheat. All farmers expect a drop in their income. The Amir expects a dramatic drop in his revenue, and this is causing him grave concern. At present, he is unable to satisfy the needs and demands of his area, however he is anxious to attract foreign aid and appreciates that he is unlikely to receive it whilst the opium poppy is still being cultivated. He hopes that by banning the cultivation, foreign agencies will contribute development funds for the area. If such aid is not forthcoming, the entire administration, and the stability of the area will be under threat of disintegration.

I left the area at the end of November. Poppy planting should have been under way for two weeks by this time, however all the fields I saw were being or had been planted with wheat. Opium planted after this risks being frosted in the winter.

North Helmand is an area much traversed by people en route to west and north western Afghanistan, by people using the bridge over the River Helmand at Kajaki. It is unlikely that farmers would be able to grow opium without it being spotted by outsiders. The Amir expects a monitoring mission during the opium cultivation period."

At the end of 1989, the local council (Shura) under the leadership of Amir Mohd Nasim Akhundzadah passed an
Islamic resolution (Fetwa) against opium poppy and hashish cultivation. The resolution came into effect in the year 1990. (Social Analysis of Opium Cultivation).

In order to neutralize the serious reactions against this resolution, IAHC, at once, sent 100 MT of seed-wheat to the area in the year 1990, and for the second time the organization sent 450 MT of food wheat to the area again.

For detailed information see the next title.
THE LOCAL COUNCIL (SHURA)

Right after the IAHC's mission reaching to the area they had to call a shura meeting, in order to arrange a better distribution of wheat seeds (to be used as food).

The shura was consisted of Olema (religious authorities), the local influential people, mujahideen representatives, the IAHC mission and the IAHC Helmand Projects Supervisor.

The aim of the distribution was to help the farmers and enable them to stop the cultivation of opium & hashish. Therefore to declare this aim, the meeting was called in Toghi Village on the 12th of January '91.

After greetings, we were introduced to each other by M. Qasim who is project supervisor in Helmand.

The participants were:

1- Haji Ghulam Nabi Akhund (shura member)
2- Haji Ahmad Akhund (Headmaster of maddrassa from Toghi)
3- Haji Mullah Ghulam Nabi (Mosa-Qala, Commander).
4- Haji Mollawri Nasruddin Sahib (Teacher in Ziarat).
5- Mullah Amir Mohammad Akhund (the Amir consultant).
6- Mohammad Qasim Akhundzadah (the IAHC Pro. Super.).
7- Mohammad Ismail (Mujahideen Representative).
8- Abdul Salam Akhundzadah (local influential).
9- Mullah M. Wali Akhund (head of central cable).
10- Mull. Seyed M. Akhund (Comm. of Toghi Group).
11- Aljaj A. Rehman Jan (the IAHC Agri. Supervisor).
12- Haji A. Rehman Jan (Teacher of Takhtapul Maddrassa).
13- Eng. Mohd Rabi Amaj (the IAHC Agricultural & Technical Supervisor).
During the introduction I found out that all the shura members were involved in different social affairs.

Then, M. Qasim read the IAHC's letter loudly. The letter was written by IAHC to be brought to practise by the local authority. Further, I was asked to speak about it. And I for my turn, first asked them to tell their opinion about IAHC's letter. All the members fully agreed to the context of the letter. Therefore I asked for their prompt cooperation for the distribution of wheat seeds. But gradually as they entered deeply in the subject, they found out that they faced a campaign against the cultivation of opium. So at once the complaints started.

The first complaint was that, some organization including IAHC had made a promise of assistance in order to enable the farmers to stop the opium's cultivation. According to this promise the Amir Administration announced ban on the poppy tilling in his controlled areas. The promise was not fulfilled by any head quarter. Therefore, local people and mujahideen started to till the poppy again.

Local people give different reasons for its cultivation (this subject will be discussed with details in the Social Analysis of Opium's Cultivation).

During the discussion one thing was more outstanding that many groups of people and mujahideen suffered heavy losses after the announcement of forbidding them from poppy business, by the Amir.

The other complaint which was expressed by mujahideen
representatives who were also commanders, was that they have not received or collected the Ushr (the tenth part of the share as tax) from the poppy dealers.

During the argument, the majority of the participants, was interested in forbidding the cultivation of poppy. It seemed to me that they might have known the consequence of its cultivation.

Such discussion went on until 12pm mednight and we could not solve this problem unless we would ourselves have gone to the Amir and call another shura. As a result I agreed and was happy to participate in the shura where at least a decision was expected to be made.

The Shura With the Amir:

The next day 13th Jan I (Eng. M. Rabi) and H.M. Qasim went to Takhtapul Village where the residence of the Amir is located. It was about 2 pm. After greetings and introducing with the Amir, he started his speach. He began with complaints about the agreements of (1939) which was not fulfilled by IAHC afterwards. Meanwhile the Amir spoke of his forces with detailed figures. Then he added about the losses the mujahideen sustained after banning on opium's tilling, which as a result the mujahideen did not receive taxes on its cultivation.

Then with the confirmation of his speach I said it (stoppage of poppy) really depends on the continuation of IAHC food assistance. On behalf of IAHC I told them that this distribution of the wheat seeds which we
brought to the area should affect directly on opium and its business. You should give us (IAHC) certain guarantee, if you willing to have such assistance. The effect should be shown identically. This is your responsibility to ban the poppy cultivation once you receive aid from outside.

In response, The Amir stated that right after receiving the IAHC message (this message was cabled to inform the Supervisor to receive the 450 MT wheat seeds) the Amir Administration again announced ban on the tilling of opium. He added that we can see those flats which were prepared for the seeding of poppy by local farmers, and those flats of land are stopped now for tilling.

Thus, the Amir in the shura had two proposes as well. Firstly, the Kajaki Bridge be either newly constructed or repaired. Secondly a canal be drawn from Band-e-Kajaki (Dam of Kajaki) to the northern areas of Helmand for the irrigation of barren lands. He promised that if these proposals are brought to practise, the opium will be disappeared permanently. He directly related this matter to the opium business.

I, in response told him that IAHC can't promise for the time being but, later on IAHC might be able to fulfil these tasks or to inform other agencies which are interested in such projects. After these discussions the shura meeting was put off for the next day.

THE Second Shura With the Amir: It was 2 pm, 14th Jan. Held the shura meeting with the same attendants. Again we started on the same subject. I related the distribu-
tion of wheat seeds to the stoppage of the opium's tilling. But in response to statement he said that not only for this distribution, the opium will be banned. Because, he said, local people sustained heavy losses and are deserved to be compensated. Yes, gradually and the more the aid is received, the more it will affect on the opium business.

The next subject discussed in the shura meeting was that how to distribute the wheat among the people. We had a programme from IAHC for the distribution of it and offered it to the Amir. He after small adjustment, agreed to our programme.

Actually my point of view was that how can I be sure that assistance is given to the actual deserved people (I mean not to be given to the mujahideen fronts). But he assured me about this, and said please write anyway I like and send that to them to be considered and signed. After farewell, we went to our old place, and I wrote according to IAHC's programme and future plans with a manifesto, sent to the Amir to be acted on.
IN THE NAME OF GOD

HELMAND PROVINCE

Mosa-Qala District

Subject: Manifesto of IAHC and Helmand Shura about IAHC's Wheat Seeds Distribution.

A- Islamic Aid Health Centre (IAHC) is sending (wheat) according to the statement that says: "The best of the people is that person who is benevolent", and it is its responsibility to dispatch International Aid to actual needy people, as far as it is possible.

B- Islamic Aid Health Centre (IAHC) is delivering 450MT (equal to 1028 Man of local unit) without any costs or expense to the people.

C- IAHC according to the verse of Koran that says: "O, those who have faith in Islam, give the property to those who deserve" regards this food as property of the people.

D- In order to avoid any misunderstanding in the future about the food distribution IAHC regards it necessary that a person should be introduced from IAHC project by H.M.Qasim to the shura, and be present in the distribution.

40
E- The shura approved that in the continuation of such assistance and as much as the aid reach to the area, it must affect on the cultivation of opium and start activities of public-utility.

F- The shura also agreed to give the aid in the future in return to the practical services which are of public utility, not totally free of costs.

G- Thus, the shura, until the IAHC Supervisor is in Helmand, is responsible to collect data and public problems which are very vital and be concerned important to be solved.

The End.
EMERGENCY FOOD DISTRIBUTION

As it was described in the shura, IAHC has sent 450 MT wheat seed to Helmand. It was 12th Jan '91. The assistance which was received from WFP, distributed under the supervisions of both IAHC and the local shura.

The purpose of sending these seed, was that from the economic point of view to help the needy families, the orphans, handicapped people (of war victims) and to affect on the cultivation of opium. Besides, to make people to be involved in cleaning karizes for irrigation and other civil or public activities.

For the distribution, first the two districts, Mosa-Qala and Kajaki, were considered. To perform this task, some mullahs and influential people entrusted to find, the real deserved people be in the above mentioned conditions. They were also responsible to write and guarantee those who were deserved.

When the needy person was coming to get the aid, first he had to come to the Amir and IAHC Supervisor. Then he was asked some questions. When he could prove, the person's paper was signed and confirmed again. After the Amir determined how much should be given to that person, afterward the person was going with his paper to the store to get the feed. After getting the food, the recipients were signing in the registers prepared by IAHC and the local shura.

No gram of the feed has been sold or given by the
bribed and so on.

The Mosa-Qala and Kajaki Districts were considered because these areas are in poor conditions especially in agriculture. No plenty of water is available to encourage the cultivation there. Karizes provide no adequate water.

Daily about 600 kgs of feed have been distributed to about 46 persons. Maximum 87.5 kgs were received by the deserved people.

The types of recipients, I could understand, were not of mujahideen side. Generally they were from local residents and seemed to me, needy.

Those mujahideen who had nothing in possess or had no earning, of course they were taking advantages of the seeds. For choosing each person, IAHC's opinion was important. Those farmers who had large families, but little land, were also compensated.

We did our best to avoid any misusing or misappropriating the aids, as much as we could.

In order to restore some karizes which have been collapsed during fighting, IAHC has also compensated those kariz users who sustained heavy losses.

Among those, Charbagh-Kariz which was producing water well enough for 250 jeribes land, has been rebuilt by IAHC tractor and distribution of 2624 kgs food. Furthermore for the restoration of Landi-Kariz, they received 1750 kgs of wheat food.
The effect of the distribution on the opium business, will be discussed later on.

Not only the people took direct advantages of this aid, but indirect too. It is clear. The price of wheat per 4.375 kgs has remained in 550 Afghanis, while in the surrounding provinces this amount costs up to about 950 Afghanis.

About 150 students of hostel got bread for one year.

This fall in the wheat price affected on the other commodities' prices, i.e. mutton per 4.375 kgs remained in 4500 Afghanis, but in other areas the price went up to 8000 Afghanis per 4.375 kgs.

After the completion of restoration works, it has been predicted that around 600 jeribes barren land will be irrigated and consequently recultivated.

Thus, after delivering the assistance in the area, it also affected on about 2000 to 3000 jeribes opium land. It means, this size land in Mosa-Qala and Kajaki was not seeded for opium which was indeed planned for. In other word 2000 to 3000 jeribes land's production is reduced as to compare with that of 1989.

A table as an example is presented on the next page that shows the names, fathers' names, dates of distribution, addresses, jobs, amount of food given to the recipients and their finger-prints.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Father's N.</th>
<th>Date</th>
<th>Resident</th>
<th>Job</th>
<th>Amount of F.P. Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>M. Issa</td>
<td>M. Osman</td>
<td>26/10/69</td>
<td>Takhtapul</td>
<td>Labor</td>
<td>15 man*</td>
</tr>
<tr>
<td>2-</td>
<td>Jamal A.</td>
<td>Shadi Kh.</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10 man</td>
</tr>
<tr>
<td>3-</td>
<td>A. Khalig</td>
<td>Dost M.</td>
<td>"</td>
<td>Shah Kar.</td>
<td>Muj*</td>
<td>15 man</td>
</tr>
<tr>
<td>4-</td>
<td>M. Juma</td>
<td>M. Ibrahim</td>
<td>"</td>
<td>Kunjak</td>
<td>"</td>
<td>15 man</td>
</tr>
<tr>
<td>5-</td>
<td>Nazar M.</td>
<td>M. Zarif</td>
<td>"</td>
<td>Shabaroz</td>
<td>Far*</td>
<td>15 man</td>
</tr>
<tr>
<td>6-</td>
<td>Maroof</td>
<td>Wazir A.</td>
<td>"</td>
<td>Takhtapul</td>
<td>"</td>
<td>16 man</td>
</tr>
<tr>
<td>7-</td>
<td>Rahmdel</td>
<td>Mirdel</td>
<td>"</td>
<td>Tiznai</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>8-</td>
<td>Sarwar</td>
<td>Zarin</td>
<td>"</td>
<td>Siaban</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>9-</td>
<td>Wali Ja</td>
<td>Ali M.</td>
<td>"</td>
<td>Wasaka</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>10-</td>
<td>Mahamad</td>
<td>M. Azam</td>
<td>"</td>
<td>Siaban</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>11-</td>
<td>Israel</td>
<td>M. Omar</td>
<td>"</td>
<td>Tizni</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>12-</td>
<td>Sabar.</td>
<td>M. Anif</td>
<td>"</td>
<td>Toghi</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>13-</td>
<td>Bor Jan</td>
<td>M. Hamza</td>
<td>"</td>
<td>Choghra</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>14-</td>
<td>Baran</td>
<td>A. Ghafor</td>
<td>"</td>
<td>Toghi</td>
<td>Labor</td>
<td>15 man</td>
</tr>
<tr>
<td>15-</td>
<td>Zarin</td>
<td>Bidulla</td>
<td>"</td>
<td>Siaban</td>
<td>Far</td>
<td>10 man</td>
</tr>
<tr>
<td>16-</td>
<td>Nizam</td>
<td>Wakil</td>
<td>"</td>
<td>Siaban</td>
<td>Far</td>
<td>10 man</td>
</tr>
<tr>
<td>17-</td>
<td>Ismail</td>
<td>Nazar A.</td>
<td>"</td>
<td>Choghra</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>18-</td>
<td>M. Juma</td>
<td>G. Qadir</td>
<td>"</td>
<td>Wasaka</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>19-</td>
<td>M. Zahir</td>
<td>G. Ismail</td>
<td>"</td>
<td>Wasaka</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>20-</td>
<td>Laal M.</td>
<td>Shir M.</td>
<td>"</td>
<td>Wasaka</td>
<td>Labor</td>
<td>10 man</td>
</tr>
<tr>
<td>21-</td>
<td>Aqa M.</td>
<td>M. Ikhla</td>
<td>"</td>
<td>Wasaka</td>
<td>Labor</td>
<td>10 man</td>
</tr>
</tbody>
</table>

* 1- Man is a local unit for weight which is equal to 4.375 Kgs.
* 5- Farmer.
* 3- Mujahid.
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Shura Declaration About Wheat Distribution:

Since IAHC provided Musa Qala with an amount of 450 M.T of wheat and rendered help to the area, every one of us thanks them for their assistance. The kind of distribution by respected Dr. Haqani was changed by our local council (Shura) for some reasons and the shura chose another way based on the benefit of the area, as whole.

1: People who avoided poppy cultivation last year, were damaged as they had to support their families. Either they had to sell their lands or they owed a lot and or now in debt. They don't have the ability to support their families now. The council decided to provide such families with an amount of wheat which should suffice for them for at least 20 days.

2: Mujahiddin members who are busy with jahad, should be given some of the wheat the rule specifies those who have got no lands or business and occupation but have to support their families.

3: The shura decided to provide the people with the wheat of course those, whose fields have already been damaged by the recent floods, either completely or partly, based on the extent of the damage.

4: Land owners whose Karezes are dry and are not able to gain their livelihood should be supplied with an amount of wheat.
5: Families, whose working members made martyres of Islamic freedom, either against Soviet or Afghan troops, during the 12 years war, and the remaining family members are either widows or orphans not capable of working, should be supplied with considerable amount of wheat.

6: An amount of this wheat should be determined for the students of dormitory -madressas, who are very poor, and some for the madressas themselves as they are liable for the boarding and lodgings of the students.

Since the distribution takes along time, the members of the shura agreed upon the above system of distribution; we thus agreed that Alhaj Akhunzada Saheb, the chief of the area, should himself undertake the task of distribution for its better implementation.

(Signatures of the members of the Shura)
DISTRIBUTION OF SEED WHEAT

IAHC dispatched 100 MT Pak-81 seed wheat to Helmand on the 22nd October 1990. This aid was received from UNHCR on that time. Right after the assistance reached the area, a shura meeting was called which was attended by the farmers, Olema, and other influential people of the area.

According to the custom, the seed should have been distributed equally to all those who possess land. But later on after long discussion, they decided to give the seed based on the broadness of the land of each of the land owner. Therefore the majority of the seed was distributed in Mosa-Qala District. Because this area has very extended lands. And small part of the assistance has been given to the Kajaki District.

The amount of the distributed seed wheat was proportionately 5% according to the land. After the documents of the land were shown or proved, they could receive seed wheat.

The table which has been prepared, shows the villages, land in jeribes, amount of seed wheat and the names of the recipients as well as their finger prints (a paper of this table is attached to this report as a sample).

After IAHC received the distribution table, we got the following information from it:

1- The 100 MT seed wheat was scattered totally on 5% of all the agricultural land in Mosa-Qala and in a few lands of Kajaki District.
2- All the agricultural lands of the Mosa-Qala Dis. are about 96834 jeribes.

The date of sending assistance coincides with the cultivation of wheat in the area. So the seed reached in a proper time and no loss or misappropriating has occurred to it. And all the seed wheat was distributed free of costs.

CONCLUSIONS :

1- The 100 MT seed wheat was scattered completely on an area of 5714 jeribes. As expected, its harvest will be 1200 MT, except the local cultivation.

2- Local people highly appreciated the assistance and offered their cooperation promptly.

3- The distribution of seed wheat has direct affect on the cultivation of opium. It means that as much as the seed wheat reach the area, it takes the opium's fields gradually.

4- Seed wheat is by far better than the food wheat. Because, from the one hand seed wheat occupy the opium fields, and make people involve in agricultural activities, from the other.

5- If an organization sends seed wheat to an area, it should be adaptable to the ecological conditions of the area. The information should also be sent along with the seed wheat, to be delivered to the local farmers.
6- Thus, it should be tried to send that kind of seed wheat, for example to the northern Helmand which needs less water than others. For instance the seed wheat should be adaptable to 1800 m above the sea level. Meanwhile the amount of fertilizer should be clear to be used on the field with efficiency.
The translation of the shura decision:

Our shura has decided if any kind of assistance is dispatched to the area, we will distribute that assistance to those the donors would consider them to be helped. I.e. the assistances will be distributed in return to activities such as cleaning Karizes, helping flood victims and others.

The shura members.
<table>
<thead>
<tr>
<th>اسم قریه</th>
<th>نام و نام خانوادگی</th>
<th>محل امضاء</th>
<th>مقدار دیجیتال</th>
<th>مقدار دیجیتال برای رسوب</th>
<th>گذرواژه</th>
<th>تکلیف</th>
<th>امضاء</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسم قریه</td>
<td>نام و نام خانوادگی</td>
<td>محل امضاء</td>
<td>مقدار دیجیتال</td>
<td>مقدار دیجیتال برای رسوب</td>
<td>گذرواژه</td>
<td>تکلیف</td>
<td>امضاء</td>
</tr>
<tr>
<td>اسم قریه</td>
<td>نام و نام خانوادگی</td>
<td>محل امضاء</td>
<td>مقدار دیجیتال</td>
<td>مقدار دیجیتال برای رسوب</td>
<td>گذرواژه</td>
<td>تکلیف</td>
<td>امضاء</td>
</tr>
<tr>
<td>اسم قریه</td>
<td>نام و نام خانوادگی</td>
<td>محل امضاء</td>
<td>مقدار دیجیتال</td>
<td>مقدار دیجیتال برای رسوب</td>
<td>گذرواژه</td>
<td>تکلیف</td>
<td>امضاء</td>
</tr>
</tbody>
</table>
CHAPTER — III
Projects evaluation
The projects being run by IAHC in Helmand, are very expanded. There are about 400,000 people living in these areas, receiving humanitarian assistance. In the clinic daily about 160 patients are being consulted and receive medicine as well. The average number of inpatients is reaching daily to 22 persons. While about 108 persons are receiving living allowance daily in IAHC projects.

Agricultural programme for recultivation of barren lands is active and functioning. For irrigating these lands, water is lifted from a depth of 25m.

Equipment or instruments (some of them electric) have been provided for hospitals, w.dwards, X-rays etc.

IAHC has carried out a programme for education of especially children. All of these activities require a better and concentrated management.

For the time being, the IAHC projects are active in the following sectors:

1- Health Project 3- Water-Supply Project
2- Educational Project 4- Income-Generative Agr. Project

All these projects are being supervised by an experienced local respected man, Haji Mohd Qasim Akhundzadah. He is from Rabat, Kajaki. His responsibilities are to be in contact with IAHC Headquarter, to find the proj. requirments, to introduce trusty persons to be employ-ed in IAHC projects, to keep in touch the IAHC project
and local administration, to guarantee those who are being employed, managing the medicine transportation from IAHC Quetta to Helmand, to adopt order and principles in the projects, as well as his own direct works in the hospital.

Assistant Supervision:

In case of supervisor's absence, a person called Atta Mohammad is responsible for all the projects control and management. But if the Supervisor is present, he is performing the tasks such as purchasing materials needed for the projects and providing them etc. He also sometimes controls the agricultural related activities. His responsibility is directly in the hospital. He is active in surgery section.

There are three other assistants working under the Supervisor, H. Mohd Qasim. They are assistants of the Kajaki Department, Char-Bagh Department and the Agricultural Department.

MANAGEMENT OFFICE:

Its manager is Esmattullah Khan. He manages office works, controls the staff's jobs, staff attendance registers, determining night duties for health workers and chokidars. He is also trying to adopt the norm IAHC has given them for clerical works. Meanwhile he assess the works done for the patients in bed, overseeing the distribution of oils for vehicles, generators, w.pumps etc.
Esmattullah Khan also orders the staff salaries forms. And is responsible for the store of the clothes, oils, spare parts and other technical equipment.

ACCOUNTING & FINANCE OFFICES:

The responsible are Shadi Khan and Mullah M. Essa. They are settling the accountings related to the office. They are calculating all the spendings of the hospitals, I.G.A. Pro. generators, medicines and other items. They also register the salaries of all the IAHC workers.

The Living Allownce:

Abdul Wase is responsible for distributing the food for the staff and the hospitalized patients. He controls the quality of the food. In the IAHC Helmand projects all the workers receive 24 hours living allowance. The reason is the staff is working full time and their homes are far away from the hospitals or clinics.

For better understanding, on the next page, IAHC's Helmand administrative form is presented for our report readers.

It would be important to determine that the projects are being run with the cooperation of the local shura.
The IAHC administration, especially after establishing the agricultural and technical supervision section, is trying to bring the projects management, in order and discipline.

The IAHC basic purpose is to consume as little as possible, but to obtain as greater as possible. Therefore the agricultural section produced forms for the consumptions of:

1- Vehicles, w.pumps, generators, and tractors.
2- Wages and salaries of labourers.
3- Living allowances.
4- Staff salaries and
5- For purchasing materials.

The recipients of either salaries, wages etc or sellers of materials, sign in these forms.

Thus, the consumptions of vehicles etc are being written including the vehicles' particularities as well as date of driving, place of driving and the purpose of taking the vehicles or its usage.

The forms advantages are:

A- to avoid any extra consumptions or misuses.
B- to bring down the speddings in all the sectors.
C- to teach people to be careful about the use of vehicles, equipment etc and bring the level of repairing charges as lower as possible.
D- to purchase the materials (food, oils, etc) as cheap as possible.

E- to avoid any kinds of misappropriating the project funds.

Therefore IAHC is strictly insist on the use of these form by the projects workers, especially the responsibles.
As mentioned in physical geography, the Helmand lands are being irrigated by its river, which is the country's major water source in the area. It starts its long trip of 394 kms, from north of this province.

Its water is not used in large amount. Technically for agriculture, the river water is used in Gwadar, Nad Ali and Lashkar Gah. It is called Helmand Development Project, that is established and constructed by Americans.

The lands irrigated by this river water, were allotted to the residents of eastern and central provinces. As a result, the plants such as cotton, wheat etc were produced to the market. The cotton market generally developed in Lashkar Gah.

For producing oil, soap etc from cotton, a factory was installed. Its oil cake (remains of squeezed seeds) has also had a good market, as food for the animals.

The factory and irrigation systems' effect on the area was outstanding. They also affected on the cultivation of opium.

Another system of utilizing Helmand River water is not sufficient and satisfactory. Just is some parts (left side) of Kajaki along side of this river the lands are irrigated. Thus, in Mosa-Qala, its river water is also used for irrigation.
Unfortunately, as mentioned before, the form of Helmand land is like a steep slope. Therefore the northern lands of Helmand River are majorly deprived of taking advantages of this water. The vast and dried deserts are in north and remained uncultivated for centuries. But for digging karizes, local people have committed efforts to flow the water. Too limited to be enough for the whole area. There are 360 karizes in Kajaki. Among them 150 are functioning. But the rest are out of work.

From the one hand the population has increased, from the other, even the old karizes have not remained with the last amount productivity. However, cultivated land should have been developed to that degree.

Not only people sustained heavy losses of lives and properties, but also were backward from education and other technical developments. Local skills or professionals have been disappeared. It seems impossible for people to amend such faults by themselves. This situation also makes the people to face to offensive activities, i.e. opium cultivation.

Regarding such atmosphere, and searching the relations between the social phenomena that which affect on people's life; IAHC was noticing the real fact about opium. And the ways finally to eradicate them.

Here the outstanding purposes IAHC is following, are: Firstly to establish agricultural developmental project. Secondly to open skills training centres with basic educations. To carry out these works, regarded as IAHC's economical policies.
Relying on these points, IAHC approved to entrust a mission in order to evaluate the current situations and to provide reliable survey.

To call it Income Generative Agricultural Project, IAHC has purposes for it. Firstly to involve local people in agriculture, provide employment, generate revenues, and to change idle lands into fertile and lush grounds.

IAHC gave a waterpump after the first well (of Naicha) succeeded in flowing water. As soon as the local people saw the well, they dared to start investing in purchasing w.pumps and installing them in the wells.

Such activities have been motivated by IAHC in its all projects areas. And at present people gradually noticing its importances.

In short, IAHC's I.G.A. Project is active in the following areas:

1- Naicha W.Pump well.
2- Kani Manda w.pump.
3- Zubir W.Pump well

In the mentioned villages IAHC has dug wells.
These are the areas, deprived from the river water.
THE NAICHA WELL

It is located 32 kms northeast of Kani-Manda Hospital, in Kajaki District, close to Naicha village. It is the first well IAHC has started to dig. The digging work started in 1989, following a decision made by IAHC with the local shura. Last year (1990) it was completed and was functioning well. The well is equipped with 22 H.P. engine (made in China) and 3" w.pump. After the completion works, digging and installing machine, the well was devoted to support the madrassa and its hostel. It lies on the middle of the Naicha desert. If the water level made increased, then more land would be cultivated which constitutes 70 to 75% of the desert.

The soil of the land has a bright colour with white particles. The land had been deposited after the water currents passed over it for many times. The humus crust is also existing to a certain percent.

TECHNICAL SURVEY:

1- Techeometrical Mapping: It was carried out in order to determine the present and planned dimensions of the project land as well as its irrigation system. Thus to know about building a water-supply. In the map, the location of well, agricultural fields, kinds of cultivation, determination of production and its norms are cleared out. Meanwhile after the completion of mapping works, the best and the most economical irrigation system will be determined.

For better understanding, please refer to the map presented on the next page.
2- Water Sources :

A- Underground Water: In order to know about the lithology of the Naicha well, let's have its layers details:

First Layer: From the surface of the ground up to 2.20m depth, is its thickness. It is a layer consists of very fine soil with a few percent (20 to 30) of particle sand. They have dark red colour. This layer is combined of argil mud. The more the well is deeper, the more the mud becomes harder and more argil. And close to the second layer, white spots have appeared which are combined of hard mud. The boundary of the first and second layers is enough clear.

Second Layer: is 3.9 m thick and is consisted of hard white colour mud. The mud is formed of particles soil. This layer is very stable and has higher constancy against the strikes of pickaxes. It has less crevices which are not visible unless the wall is touched. This layer is formed under half swampy condition. And the pressure which has come over the layer, made it to have less porosity. Consequently, this process affected on passing water through the holes. And the water animals and her s are not available.

Third Layer: is separated by an horizontal crevices which is 0.8 cm long and consists of fine mud with gray green colour. The mud is very concentrated and have narrow long crevices upto 0.2 mm in verticle position. Along some parts of the crevices, some swampy green mud have been gathered which is very slicky. In the crevices, the sea herbs have been demolished. And their remains
seemed now like black substances which covered the crevices' surfaces. This layer is a special swampy one which is formed in calm ecology and in deep condition. It is 2 m thick. It has higher porosity than those of first and second ones. The lower boundary of this layer is not very wet.

Forth Layer: is 4 m thick and is a beginning to the aquiferous layer. It has yellow and green colours. That generally the green colour is formed and found where the surface is slicky and has fractures. While the yellow one is where there is plenty of iron-hydroxide. Most of the green lens are found in this layer in concretion form. The particularity of this layer is the existence of crevices. Thus the appearance of black lines along the crevices which indicates the remains of the fossils of sea herbs. When the mud pieces are exposed to open air and the sun, the pieces being separated easily. This layer is not harder than the third and second ones. But the veins which pass the water through the holes, exist here.

Fifth Layer: is exactly the aquiferous layer and is consisted of bright gray colour. The yellow colour along the crevices can rarely be seen. This indicates the existence of water in this layer. Thus there are small drainages with 0.4 cm diameter, containing plenty of deposited calsites around the banks. The water being passed through the drainages. This layer starts from a depth of 72.1 m upto the well's bottom. The direction of water is as same as the area's inclination (north-
to southwest). The water's function is, if the holes are cut off, at first the water flows out eruptively. But gradually its eruption is being reduced and then the water current gets as normal speed as usual. Though because of the existence of water in the well this layer could not be studied precisely, it was however learned that it has high degree of porosity. The aquiferous layer is less harder than the forth one. The more the well is deeper, the more the rocks appear in it. It can be said that this layer has come under pressure to become stony.

B- Surface Water-Supply: Right after studying the lethology of the well, it was learnt that the above layers are capable of passing water through the holes down to the well's bottom. When we asked the experienced people, they stated that within March (which is a rainy month) last year (1990) the water level increased by 1.2 m in the well.

In order to have more water available in the summer that is needed more in this time. There are two ways to increase the well's water level.

One way to excavate drainage in the aquiferous layer, opposite to the water springs' direction. But to complete this method requires more fund. Therefore it is not of use from economic point of view. Because the income of the project production will not be able to remedy the consumption of excavations in 50 years.

The other way is the artificial method from the ground surface. To the northwest of this well, there is a
natural stream of rainy water. Here, if a dam is built it would supply 3000 m2 water. This dam would provide water for both irrigation and increasing the well's water. Even in winter, when the water level rise upto the w.pump, the extra water in the well can be lifted upto the dam, by w.pump. The dam would supply again. In winter, anytime there is possibility of collapsing of well. Therefore it is necessary to save the well from the one hand and not to waste the water from the other.

This process requires the w.pump to be daily functioning. For this purpose, a part of this stream (or canal) is closed for storing water. It is similar to the dam of Zobair. By the tractor, they have gathered the canal -'s bed soil. And since it is not very wide for keeping water, doesent need for more doors. Only in two sides the doors will be necessary to control the water.

For being better familiar to it, lets find the techometrical map, drawn on the next page.

TECHNICAL & CONSTRUCTIONAL WORKS:

For obtaining water for agricultural activities, totally 604.25 m3 excavation work have been carried out. Of which 47 m3 was done for digging stairs and the rest was for the well itself. The dimensions of the well from the surface (0 to 10 M) are 6.5 X 5.5 m and of the depth (10 to 17 m) are 6.5 X 4.5 m. The digging works were given to the lessee. In addition according to the custom three times meals were also being offered to the workers. The stairs digging completed upto 9 m depth, by 57°.
The length of the stairs is 13 m from the surface and then it is covered by woods and mud.

The aquiferous area in the well's bottom has become bare with 60 m² dimension. Of which 41 m² area is exactly aquiferous. While the rest was not of producing water. The maximum thickness of water layer itself is 5.9 m². And within 19 hours, it gives 172 m³ water. That is fully enough for this size of the land. The well is equipped with 22 M.P. China made w.pump, which is able to lift up 62 m³/hr.

CULTIVATION: The size of the land, being irrigated by this well, is 2 hectares. The first production they collected, was in 1990, which contained majorly wheat. Besides, they cultivated the common local vegetables. Which had a total worth of 50000 Afg. Since the soil of the area is not fertile enough, therefore they used animal manure and ashes in the field. And it was recommended that they should plant more vegetables rather than other items. For the Income-Generative Project was established to support the madrassa which was built beside the field, so it is officially given to the madrassa. And the madrassa students are working on this field in order to avoid the consumptions pertaining to the farmers. The total consumption of the w.pump etc of the year 1990 was about 70000 Afg. But the production was about 190000 Afg.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod Upper</th>
<th>Reading on Rod Lower</th>
<th>Vertical Location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map (cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>I-8</td>
<td>339.2</td>
<td>259.2</td>
<td>0</td>
<td>80</td>
<td>8”</td>
<td>40° 00' S.W from R.P--I</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>247.9</td>
<td>184</td>
<td>0</td>
<td>63.9</td>
<td>6.39</td>
<td>36° 30' S.W from R.P--I</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>219</td>
<td>151</td>
<td>0</td>
<td>67.5</td>
<td>6.75</td>
<td>17° 00' S.W from R.P--I</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>237.3</td>
<td>165.3</td>
<td>0</td>
<td>72</td>
<td>7.2</td>
<td>180° 00' S. from R.P--I</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>261.3</td>
<td>209.8</td>
<td>0</td>
<td>51.5</td>
<td>5.15</td>
<td>179° 00' S.E from R.P--I</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>221.8</td>
<td>152.8</td>
<td>0</td>
<td>69</td>
<td>6.9</td>
<td>146° 00' S.E from R.P--I</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>173</td>
<td>140</td>
<td>0</td>
<td>33</td>
<td>3.3</td>
<td>88° 00' E from R.P--</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod Upper</th>
<th>Reading on Rod Lower</th>
<th>Vertical Location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map(cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>II-7</td>
<td>226</td>
<td>177.1</td>
<td>0</td>
<td>48.9</td>
<td>4.89</td>
<td>29° 00' N.E from R.P--II</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>263.3</td>
<td>223.3</td>
<td>0</td>
<td>46</td>
<td>4.00</td>
<td>70° 00' N.E from R.P--II</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>320.5</td>
<td>225.2</td>
<td>0</td>
<td>95.3</td>
<td>9.53</td>
<td>110° 00' S.E from R.P--II</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>395</td>
<td>309.5</td>
<td>0</td>
<td>85.5</td>
<td>8.55</td>
<td>152° 00' S.E from R.P--II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>400</td>
<td>302</td>
<td>0</td>
<td>98</td>
<td>9.3</td>
<td>131° 00' N.E from R.P--II</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod Upper</th>
<th>Reading on Rod Lower</th>
<th>Vertical Location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map (cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II-1</td>
<td>171.3</td>
<td>147.9</td>
<td>0</td>
<td>23.4</td>
<td>2.34</td>
<td>108° 00' S.W from R.P--II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>327.3</td>
<td>237.4</td>
<td>0</td>
<td>89.9</td>
<td>8.99</td>
<td>47° 00' N.W from R.P--II</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>181</td>
<td>173.5</td>
<td>0</td>
<td>7.5</td>
<td>0.75</td>
<td>86° 00' N.W from R.P--II</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>205</td>
<td>124.5</td>
<td>0</td>
<td>80.5</td>
<td>8.05</td>
<td>20° 00' N.W from R.P--II</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>205.5</td>
<td>166.3</td>
<td>0</td>
<td>39.8</td>
<td>3.98</td>
<td>8° 00' N.W from R.P--II</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>209</td>
<td>148</td>
<td>0</td>
<td>61</td>
<td>6.1</td>
<td>1° 00' N.E from R.P--II</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1 cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map(cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Side of well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>194.2</td>
<td>109.8</td>
<td>0</td>
<td>84.2</td>
<td>8.42</td>
<td>35° 00' N.W from R.P-I</td>
</tr>
<tr>
<td>2</td>
<td>303.8</td>
<td>138.8</td>
<td>0</td>
<td>165.00</td>
<td>16.5</td>
<td>50° 00' S.W from R.P-I</td>
</tr>
<tr>
<td>3</td>
<td>311</td>
<td>125</td>
<td>0</td>
<td>186.00</td>
<td>18.6</td>
<td>30° 00' S.W from R.P-I</td>
</tr>
<tr>
<td>4</td>
<td>380.00</td>
<td>183.5</td>
<td>0</td>
<td>196.5</td>
<td>19.65</td>
<td>16° 00' S.W from R.P-I</td>
</tr>
<tr>
<td>5</td>
<td>386.5</td>
<td>268</td>
<td>0</td>
<td>118.5</td>
<td>11.85</td>
<td>23° 00' S.W from R.P-II</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>285.5</td>
<td>0</td>
<td>114.5</td>
<td>11.45</td>
<td>12° 00' S.W from R.P-II</td>
</tr>
<tr>
<td>7</td>
<td>390</td>
<td>225</td>
<td>0</td>
<td>165</td>
<td>16.5</td>
<td>13° 30' S.W from R.P-II</td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1m on the field.
2-R.P: Radius Point of topographical net.
THE ZOBAIR WELL

This is the first well dug for the agricultural purposes. The digging works completed in 1990. It was first decided to be dug in Sarcheshma, about 3 kms away from the Karizes, but for local reasons the w. pump was transferred to Zobair, 22 kms from Kani Manda Hospital in Kajaki District. Where parts of its desert has good soil and rich of hunus crust (1-2 %). The surrounding land need not much level works.

The soil of the well has not seen the technogenesis operations yet. It has a distance of 22 kms from IAHC Kani-Manda Hospital; located in Kajaki District. The well is 23 m deep. It irrigates a long stretched land lies from north to southwest. Its average width of the land has reached to 200 ms, while length is about 3 kms. The land has an incline of 0.5 % and surrounded by high hills having gravels.

Thus, the cultivated land is 300 jeribes broad. The soil crust is concentrated after the rainfalls brought it here to the valley's depth and has capability of keeping moisture.

TECHNICAL SURVEY: (A)

Techeometrical Mapping: In order to have an efficient and successful plan, mapping is a necessary step for it. Based on this idea first of all, IAHC has conducted a precise survey about I.C.A. Project in the area. After the assessment of the results of the survey, it makes plan for them. Also, for techeometrical mapping of all concerned areas around the well, we have prepared a map with 1/2000 scale. The map will be given later in the next pages. The location of the well, the course of
water from the well to the target lands and the broadness of the land are shown clearly on the map. And according to the local common agri. norms, the amounts of fertilizer and seeds, will be determined. After mapping it became possible to know about the technical and constructional consumptions.

LEVEL (B): The levelling works in this part has been concentrated on the construction of rain water-supply dam. By levelling, the inclination of the land, where the dam will be built, is determined. Based on that, the parameter of the building of the dam has been fixed. In case of flowing water of the well to the nearby land, has been studied with level. Thus, after techeometrical mapping, it is learned that how much pressure the water puts against the dam wall, and consequently measured.

UNDERGROUND WATER SOURCES (C):

1- Lethology: For better understanding about underground water, it is necessary to know the lethology of the different layers of the soil surrounded the well. Then judge the ecological conditions ruling the area, and get the result, whether to rely on the underground water or not. Whether the produced water is adequate for irrigation of the project land or not. Or would the artificial water-supply be possible for this area having limited sources? To have answer to these questions, lets have the well's lethology.
FIRST LAYER: It is 0.5 m thick. Consists of an erosive crust having plenty of humus. It has a bright buff color and high degree of porosity. This layer has a normal stability with less sliding. The lower part of this layer is not clear enough.

SECOND LAYER: has a 0.70m thickness and consists of river washed gravel that indicates the movement of the gravel from far away distance. By the average speed of the water between the gravel stone, 10% of the sand and mud has been deposited. The gravel have sizes of 0.4 to 0.5 cm combined of Dolomits and sands. Of which about 70 % of them is Dolomit and 20% sand. There are small size (0.25 mm) thick gravel as well. The lower boundary of the layer is not clear.

THIRD LAYER: is 0.3 m thick and consisted of erosive mud. When exposed to open air, the mud is being divided in small pieces. It has a bright brown colour. In the upper boundary of this layer a single 10 cm thick layer has emerged and contains argil mud and has white colour. The main particularity of this layer is the existance of crestal Clete in lens form and has no connection with the crevices.

FIFTH LAYER: is 1.40 m thick and contains of bright coloured mud. The upper end of this layer has bright gray colour, which gradually being converted to clear buff colour. The particular thing here is, having crevices, laid horizontal with <60 inclination. It is <1 cm thick. And also it is outstanding in this layer that it lacks any salts in crystal forms and herks of the lake.
The mud pieces, when exposed to open air, they separate with 12 cms broadness. The lowest part of this layer is not clear enough.

* FORTH LAYER: is 0.90 m thick, and consists of sandy mud with dark colour. And also contains 5 to 7% of salt. When exposed to open air, or if the pressure lessens from top, generally the crystal Clete and rarely the salt precipitate along the crevices. This has lower porosity and crevices which generally (90%) is horizontal.

The particular thing here is the existence of crestal Clete along the crevices and remains of the lake herbas which has emerged with black colour and covered the surface. The horizontal crevices have originated from long ago.

SIXTH LAYER: is 19.20 m thick and consists of bright brown coloured mud. Which has high degree of hardness and has many argil. It can resist against external pressure. On upper boundary of this layer, there are mud lenses with bright green colour. The lens have been spread in order or in lines. The lenses are combined of argil mud, which indicates the existence of a lagoon in the past. The sediments of iron hyroxides (in concretion form) have been concentrated in the crevices and surrounded by green flowers.

The more the well goes deeper the more moisture increases; up to 22 ms depth, the spring appears, flowing water. The direction of the flowing water springs is northwest to southwest. Whenever the viens of the water come under pressure (or be cut off) at first it flows
eruptively but then the force is declined and flows slowly. In some of the springs the water flows out with sounds. The thickness of the aquiferous layer is about 1.50 m. The mentioned layer is under another 0.5m thick layer which has less constancy. And the aquiferous layer itself has a dark yellow colour with less constancy. In case of raising water above, any time there is possibility of collapsing or sliding.

In this layer, generally the spring comes out with upto 0.3 cm diametre. The internal walls of the viens have been covered with crystal Cletes. The water of this layer is warm and its geometrical gradient is 1.5°C in 23 ms depth. Thus the change in temperature is visible in this layer. The water production of this layer is 10 m³/ 7 hours.

For better understanding refer to the mentioned well's lithology drawn on the next page.

2- Surface Water Supply:

In order to save water from wasting and restoring the underground water, it is necessary to use the surface water supply dam. In comparing the lithological particularities of the Naicha and the Zobair wells, it is learnt that the layer above the aquiferous one, has a good quality of passing water through the holes down to the aquiferous layer. And this process was visible in the raining season in Naicha well.

For supplying rain water, a dam 240 m north-east of the well has been built. If the water remains for longer time
in the dam, it will be used for irrigation purposes. Otherwise it will be effective for increasing the well's water.

The length of muddy dam at the beginning is 100 m and width is 2 m while the upper level is 2 m high with 115 meters length and 1.50 m breadth.

Since no technical equipments are available, they make the walls of the supply hard by using only tractor.

Small canals have been extended from both sides of the dam. They will be used for irrigating the lands. Besides two doors will be set in order to control and keep the water. The doors will be fixed in cement. This muddy dam controls the water on about 45000 m² area. And can supply 22500 m³ water. But the general capacity of the dam is 367 m³.

For better understanding please refer to the scheme of the muddy dam, drawn on the next page.

TECHNICAL WORKS: 13 days ago, since the digging works or excavation of the well started up to now, totally 602.25 m³ have been dug. The digging and lifting the soil from the well to the surface, is being carried out in local system. And as it is common, the digging work is given to the lessee with three times meals as well as tools and other necessities.

The first agreement was 20 ms, per cubic metre was 1000 Afg. The living allowances of four laborers are also given by IAHC, that costs monthly about 43500 Afghanis. The first agreement was continued for 10 days. Their
speed of work was 50 m³/month which is considered as an active and quick work. And especially after the first agreement, the process of work got much more speed than had been before. This is now 185 m³/month.

Thus, stairs have been built in the well up to 16 ms depth. The stairs have a 22 ms length and 1 m breadth, but the real height is 1.5 m. The total size of digging of the stairs is 33 m².

In order to prepare the land for agriculture, land with 240 jeribes dimension has been furrowed by tractor. Besides, 1500 m long canal (ditches) have been dug. These canals will take both the rain and well drawn waters to the concerned lands. Also banks with a length of 2000 ms are built around the land.

Finally they plan to dig two drainages in a depth of 25 metres and 200 ms length from northeast to northwest.

CULTIVATION:

Since so far no adequate water source is available right now, therefore all the furrowed land is not cultivated. Only for the first time 350 kgs seeds have been scattered. And toward southeast of the land in a 5 jeribe was devoted to peas in rainfed irrigation. Besides, they plan to set small trees of pomegranate and mulberry along the canals or ditches. And as an experience they would cultivate cereals and vegetables for future. If potatoes gave good result it would be very beneficial for farmers. The local system is common in the project. About 1/3 1/4 of the harvest is given to the farmers. Please refer to the techeometrical map of Zobair well, for better understanding.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map(cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I) Close with the well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>143.2 121.5 0</td>
<td>21.7</td>
<td>1.09</td>
<td>31° 30' N.E</td>
<td>from R.P-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>149.1 111 0</td>
<td>38.1</td>
<td>1.9</td>
<td>28° 30' N.E</td>
<td>---/---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>160.8 97.5 0</td>
<td>63.3</td>
<td>3.17</td>
<td>30° 30' N.E</td>
<td>---/---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>185.1 93.7 0</td>
<td>91.4</td>
<td>4.57</td>
<td>28° N.E</td>
<td>from R.P-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(II) on western side of Agricultural Land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>158 15.2 0</td>
<td>142.8</td>
<td>7.14</td>
<td>26° N.E</td>
<td>from R.P-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II-1</td>
<td>161 107 0</td>
<td>54</td>
<td>2.7</td>
<td>17° 30'</td>
<td>---/---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Western end of the dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>177.7 91 0</td>
<td>86.7</td>
<td>4.34</td>
<td>15° N.</td>
<td>from R.P-II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>144 47.8 0</td>
<td>96.2</td>
<td>4.81</td>
<td>49° N.</td>
<td>from R.P-I</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map(cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(II) Eastern end of the dam</td>
<td>4</td>
<td>1885</td>
<td>58.5</td>
<td>0</td>
<td>130</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>184</td>
<td>87</td>
<td>0</td>
<td>97</td>
<td>4.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>277</td>
<td>189.1</td>
<td>0</td>
<td>87.9</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>(III) 77°N.E & 114 M. from well</td>
<td>7</td>
<td>357.5</td>
<td>235.4</td>
<td>0</td>
<td>132.1</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>III-1</td>
<td>183.5</td>
<td>151.5</td>
<td>0</td>
<td>32</td>
<td>1.6</td>
<td>8°30'S.W from R.P-II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>237.1</td>
<td>153</td>
<td>0</td>
<td>84.1</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>281</td>
<td>157</td>
<td>0</td>
<td>124</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>(IV) 55°00'S.E & 162 m from well</td>
<td>4</td>
<td>310</td>
<td>155.5</td>
<td>0</td>
<td>154.5</td>
<td>7.73</td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1 cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>DAIE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod Upper</th>
<th>Lower</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map (cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV-1</td>
<td></td>
<td>188.6</td>
<td>147.9</td>
<td>0</td>
<td>40.7</td>
<td>2.04</td>
<td>8° 00' S.W from R.P-IV</td>
</tr>
<tr>
<td></td>
<td>V-1</td>
<td></td>
<td>272</td>
<td>160.5</td>
<td>0</td>
<td>111.5</td>
<td>5.58</td>
<td>11° 00' S.W from R.P-IV</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>257.5</td>
<td>163</td>
<td>0</td>
<td>94.5</td>
<td>4.73</td>
<td>9° 00' N.W from R.P-V</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>189</td>
<td>10.5</td>
<td>0</td>
<td>178.5</td>
<td>8.93</td>
<td>7° 00' N.W from R.P-V</td>
</tr>
<tr>
<td></td>
<td>(V)</td>
<td></td>
<td>220</td>
<td>30</td>
<td>0</td>
<td>190</td>
<td>9.5</td>
<td>13° 00' N.W from R.P-V</td>
</tr>
<tr>
<td></td>
<td>29° 30' S.W & 226m from well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VI-1</td>
<td></td>
<td>122.5</td>
<td>80</td>
<td>0</td>
<td>42.5</td>
<td>2.13</td>
<td>2° 00' N.W from R.P-V</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>123.7</td>
<td>51</td>
<td>0</td>
<td>72.7</td>
<td>3.64</td>
<td>5° 00' N.E from R.P-VI</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>127</td>
<td>22.5</td>
<td>0</td>
<td>104.5</td>
<td>5.23</td>
<td>10° 30' N. from R.P-V</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>152.5</td>
<td>30</td>
<td>0</td>
<td>132.5</td>
<td>6.63</td>
<td>15° 00' N.E from R.P-V</td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1m on the field.
2-R.P: Radius Point of topographical net.
PLAN OF MUDDY DAM OF ZOBAIR'S PROJECT

Section I—I

Section II—II

1. Concrete plaster.

2. Concrete stony Fortification.
The following table shows the prices of lease-holding in digging the wells, in the northern Helmand.

Table (6)

<table>
<thead>
<tr>
<th>Kind of work</th>
<th>Work done in one month</th>
<th>Cost of one unit of work by contract</th>
<th>Living allowance of four lease-holders in a mon.</th>
<th>Miscellaneous</th>
<th>Cost price. m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digging well 0-20 m depth by first contract</td>
<td>50 m³</td>
<td>1000 Afg per m³</td>
<td>43500 Afg</td>
<td>3000 Afg per month</td>
<td>1930 Afg</td>
</tr>
<tr>
<td>Digging 20-25 m depth by second contract</td>
<td>155 m³</td>
<td>2000 Afg per m³</td>
<td>43500 Afg</td>
<td>3000 Afg per month</td>
<td>2251 Afg</td>
</tr>
<tr>
<td>Digging ladder into well 22X15X1.</td>
<td>33 m³ in 18 days.</td>
<td>total cost 250000 Afg</td>
<td>total 26100</td>
<td>1800 Afg</td>
<td>8421.21 Afg</td>
</tr>
<tr>
<td>Digging sewer 1.25X0.5X1 dimension.</td>
<td>5000 Afg</td>
<td>43500 Af</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

89
THE KANI-MANDA AGRICULTURAL LAND

It is a 2 jeribe land situated around the Kani-Manda hospital. There is another 2 jeribes land lies beside that. The land is being used from the one hand to provide and support the living allowance of the hospital staff and to recultivate the land based on modern system of irrigation, from the other.

Such lands lie parallel to the seasonal river of Kani-Manda in a width of 1 km on the left side with a 80 km² dimension. These lands are located on the even hieghts. Their crusts have been washed away by rain water and consequently the soiled crust which contains herbs growing substances, is very weak. And the humus exists with few percentage.

A layer had been formed on the land, containing the river furnished gravel stone, with a 10 cm thickness. The advantage of using these lands is that next to them water being run and water is available in a less depth. This quality is very efficient and economical in practical works. Therefore IAHs had committed efforts to prove the local people the advantage of using water-pumps in the wells for better and systematic irrigation.

For recultivation of these lands, the activities such as putting away the river gravels, ploughing, adjusting water-pump to lift up water from the nearby canal,using chemical fertilizer and manure and finally cultivating different kinds of vegetables and wheat; are considered necessary steps.

At present the experimental value of the land is higher
than economical one. Because an experience of one year proved that with using fertilizer the land is getting rich. Especially in growing fodder and grass the land absorb nitrogen in it. Which is considered a vital aspect of the recultivation of the land.

Thus the Pak-81 seed wheat has given a good result than the local one. The Pak-81 seed wheat has higher resistance against the ecological pressure.

The constructional works which are done for the recultivation of the land are: Making streams or ditches, creating banks for controlling water in a specified flat, ploughing, irrigating by w.pump and scattering manure and fertilizer.

The vegetables they have grown were common in the area and were being consumed by the hospital staff. A small part of the land was seeded for fodder and will be prepared for the vegetables cultivation for the next year.

On another part or flat of land the Pak-81 seed wheat has been seeded and its result will be studied later on after the harvesting.

The pump watering the land, is 12 h.p. China made and has a k.p.d. of 60 m³/hr. It irrigated the 2 jeribes land within 8 hours, and after every 10 days. And the tractor can also plough the 2 jeribe land in 40 hours.

The production of the project goes to the hospital and its total cost is then being collected in its accounts.

At the end for close familiarity please refer to the theometrical map, drawn on the next page with its table.
<table>
<thead>
<tr>
<th>Date</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod Upper</th>
<th>Reading on Rod Lower</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map(cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>107.2</td>
<td>82.5</td>
<td>0</td>
<td>24.7</td>
<td>2.47</td>
<td>310 00 S.W from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>89.8</td>
<td>45.8</td>
<td>0</td>
<td>44</td>
<td>4.4</td>
<td>315 00 S.W from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>109.3</td>
<td>57</td>
<td>0</td>
<td>52.3</td>
<td>5.23</td>
<td>320 00 S.W from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>109.1</td>
<td>59.1</td>
<td>0</td>
<td>54</td>
<td>5.4</td>
<td>338 00 S.W from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>93.1</td>
<td>13.9</td>
<td>0</td>
<td>79.2</td>
<td>7.92</td>
<td>340 00 N.W from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>99.9</td>
<td>15</td>
<td>0</td>
<td>84.9</td>
<td>8.49</td>
<td>357 30 N.W from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-7</td>
<td>68.5</td>
<td>21.3</td>
<td>0</td>
<td>47.2</td>
<td>4.72</td>
<td>130 00 N.E from R.P-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>69.1</td>
<td>34.7</td>
<td>0</td>
<td>34.4</td>
<td>3.44</td>
<td>28 00 N.E from R.P-I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1 m on the field. 2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map(cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-9</td>
<td>Upper</td>
<td>74.5</td>
<td>10</td>
<td>0</td>
<td>64.5</td>
<td>6.45</td>
</tr>
<tr>
<td>-10</td>
<td>Upper</td>
<td>73.5</td>
<td>7.5</td>
<td>0</td>
<td>71</td>
<td>7.1</td>
</tr>
<tr>
<td>-11</td>
<td>Upper</td>
<td>125.6</td>
<td>61.2</td>
<td>0</td>
<td>64.4</td>
<td>6.44</td>
</tr>
<tr>
<td>-12</td>
<td>Upper</td>
<td>179.5</td>
<td>123.5</td>
<td>0</td>
<td>56.00</td>
<td>5.6</td>
</tr>
<tr>
<td>-13</td>
<td>Upper</td>
<td>178.7</td>
<td>125.8</td>
<td>0</td>
<td>52.9</td>
<td>5.29</td>
</tr>
<tr>
<td>-14</td>
<td>Upper</td>
<td>132.1</td>
<td>91.1</td>
<td>0</td>
<td>41</td>
<td>4.1</td>
</tr>
<tr>
<td>-15</td>
<td>Upper</td>
<td>108.1</td>
<td>97.7</td>
<td>0</td>
<td>10.4</td>
<td>1.04</td>
</tr>
<tr>
<td>-16</td>
<td>Upper</td>
<td>186.4</td>
<td>176.8</td>
<td>0</td>
<td>9.6</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Number & Location of R.P</th>
<th>Number of Secondary R.P</th>
<th>Reading on Rod</th>
<th>Vertical location of Telescope</th>
<th>Reading Difference</th>
<th>Distance by Scale on Map (cm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper</td>
<td>Lower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I)</td>
<td>I-17</td>
<td>188.5</td>
<td>174.3</td>
<td>0</td>
<td>14.20</td>
<td>1.42</td>
<td>168 008.0E from R.P---I</td>
</tr>
<tr>
<td></td>
<td>-18</td>
<td>190.5</td>
<td>165.3</td>
<td>0</td>
<td>25.20</td>
<td>2.52</td>
<td>207 008.0W from R.P---I</td>
</tr>
<tr>
<td></td>
<td>-19</td>
<td>209</td>
<td>158.4</td>
<td>0</td>
<td>50.60</td>
<td>5.06</td>
<td>224 008.0W from R.P---I</td>
</tr>
<tr>
<td></td>
<td>-20</td>
<td>79.8</td>
<td>33.00</td>
<td>0</td>
<td>46.80</td>
<td>4.68</td>
<td>260 008.0W from R.P---I</td>
</tr>
<tr>
<td></td>
<td>-21</td>
<td>48.3</td>
<td>9.50</td>
<td>0</td>
<td>38.80</td>
<td>3.88</td>
<td>265 008.0W from R.P---I</td>
</tr>
<tr>
<td></td>
<td>-22</td>
<td>94.7</td>
<td>61.7</td>
<td>0</td>
<td>33.00</td>
<td>3.300</td>
<td>278 008.0N from R.P---I</td>
</tr>
</tbody>
</table>

Note: 1-Reading of 1cm on rod is equal to 1 m on the field.
2-R.P: Radius Point of topographical net.
PROBLEMS AND FUTURE PLANS

There are two kinds of problems. They are:

Irrigational and Cultivation Problems.

1- Irrigational Problems:

The morphology structure of the Helmand area including of two kinds of land elements (geosyncline & platform). The lands of northern Helmand stretching mountains front zone and in platform. The platform not only in this area even for the Systan sinking is in its second and third cycles. The centre of this sinking is located on the border of Afghan-Iran. And the direction of the current waters is also led to that side.

The underground water of northern Helmand is actually depend on the platformal conditions of capillary waters. Which are surrounded in small veins with a diametre of upto 5 mm in muddy sedimental layers. Therefore such supplies of water under the ground are not trustable for irrigational purposes. They can be used only for the micro-irrigation projects. But in some faraway places this water shall be used for settling though it is difficult. For this aim, the survey of underground water should be carried out based on the geophysical methods.

The current water is plantiful here. As mentioned before, the Helmand river is a major water source, vitally important for irrigation. In the northeastern parts of Helmand especially Kajaki District, there is a large desert above
the hydro-electric station. In case of flowing water over it, a great size of land will be irrigated. At the moment the most possible irrigational work will be done is that flowing water in Safid-Hisar area from the Helmand river by w.pumps. These pumps are to be active by using electricity. It needs less expense and give quick result. Moreover the area people promised that they will perform almost 50 % of the work.

There is a desert called Farhad located in Nowzad Dis. In case of providing water by w.pumps from the nearby river, it would also help fertile hundreds of jeribes of lands. The people were also found here cooperative.

Thus along side of Mosa-Qala river, if some wells are sunk here, the scarcity of water will be solved and certainly would help to water 16000 jeribes land.

In southern Helmand the case is vice versa. I.e. they struggle to stop the water's great pressure.

The above mentioned problems can be solved by the following plans.

A- IN IRRIGATION:

1- Providing water for the new agricultural project. In case if the underground water is used, a geophysical survey of northern Helmand deserts (Kajaki) is necessary with the electric (VES) method. In addition to that the fracture of Sar-Cheshma area should be surveyed. Otherwise, the Helmand river irrigation system could be studied by installing a w.pump with big diametre and run by electric energy.

1. Vertical Electrical Sounding: Run by constant current.
2- Close to the Mosa-Qala District there is 16000 jer. land devoted to the opium cultivation. The area farmers promised to stop the poppy if the water is provided in a great amount.

3- Studying the possibilities of watering the Farhad desert (Nowzad District), considering using the w.pumps and building a water-supply dam.

B- IN CULTIVATION:

1- Sending fertilized seed wheat to the area in the autumn to be seeded.

2- Dispatching rain-fed seed wheat to Kajaki District as an experiment.

3- Propagating gardening by establishing a new agricultural projects watered by w.pumps. In this regard the trees such as pomegranates, almond and wall-nut should be considered. They need less water.

4- In southern Helmand, rehabilitating the previous irrigation system and propagating the cotton cultivation with prearrangement of its market.

THE KAJAKI HYDRO-ELECTRIC POWER STATION

Islamic Aid Health Centre (IAHC) as you may have gathered, was active in north Helmand since 1934 in different fields of humanitarian assistance. It could support local people independently.

Meanwhile IAHC along with its direct responsibilities, had intention toward protection and maintenance of the public-utility projects and national property. This was the reason that right after the Kajaki H.P.S. fell in the hands of mujahideen, IAHC sent a mission to assess its condition, and find out the necessary items it needs. Subsequently the mission prepared a detailed report that is called "Kajaki Hydro-Electric Power Station". It was written by Dr. Alistair Lipp.

The construction work of the dam of this Station was started at the end of 1950 by USAID financial support and completed in 1975 and was delivered to the Afghan Authority.

At present there are two turbines functioning. The production capacity of this Station is over 160,000,000 K.W. per/hr. But the planned or the highest capacity of this Station is 7 turbines, of which there are only two of them. The electricity of this Station was being transferred upto two years of coup to Kandahar, Lashkar-Gah and Grishk.

Prior to capturing the Station by mujahideen there were 3 engineers and 148 other workers, working in 3 shifts. Beside the Station there is a colony made for the Station's staff.
At the moment the electricity is being transferred to the Kajaki Bazaar only. And there are 21 persons expert staff, working full time. They are the workers who have been working here before and obtained valuable experience.

There are 4 operators working in different parts or sections of the Station. Besides, there are 7 people working for to weld and 2 persons as chokidars.

As a head, there is a labor foreman, responsible for the protection of the Station. He is trusted man in the front. The distiction or privilege of laborer here is, having better houses, built close to the Station. Thus, receiving 10,000 Afg (equal to Rs. 286) as well as 140 Kgs wheat per month, only.

Lack of some spare parts & lubricating oil is the problems the Station is faced to it now. If these are not provided, the Station would led gradually to destruction. In this case, there will be no highly experts to repair it basically and thus it would cost too much to be afforded.

The needs of the Station are as follows:

1- According to the observation of IAHC mission (1991) and the statement of the professional staff, there is a need for 8 pieces of the roters turbines. (details are available in IAHC Head Office.).

2- Generally almost all the warning and controlling relays which were functioning automatically before,
are not working now. And the workers force the relays physically.

The relays are:

A- T.S.B. relays which is functioning when the water pressures while the turbines are off. It's automatic system does not work. The workers start it with hands. According to the foreman or head technician, its future is gloomy.

B- The grease-pump relay that is called Timer is in bad condition. At first the grease was automatically pumped up to the gates which are in the water. Now it does not work.

3- Radiator that make water cold has become leak in all the pipes. It can not be repaired either in Pakistan or Afghanistan. While it needs to be changed. Totally there are 8 pipes. Now the holes are closed by small pieces of wood. If they are not repaired or changed the leaks would pollute the hydraulic and as a result it will not be working.

4- Since the pipes are damaged or leaked, the consumption of the hydraulic in the Station has risen to an abnormal level. At present about 90 barrels of hydraulic (No. 30) is needed.

5- The grease is one of the important items of the Station. Since the Timers is failed to function, therefore the grease is being used abnormally. Unless the the Timers is made to be active, this process will be continued as it is now.
6- Bulbs are also needed for the station. At present the following kinds of them are needed:

A- The 220 volts, 100 W. bulbs having thread, are necessary for the Station's tunnels and stairs. Totally needed 500 pieces.

B- Neon lights are necessary for lightening the outer space of the Station building as well as the gates. Totally needed 200 pieces.

C- The screwed bulbs with 500, especially needed for the tunnels. Total 200 pieces.

D- The bulbs having buttons for tunnel. Total needed 300 pieces.

7- Plastic solution tape for wiring. About 200 rolls are needed.

8- Cable with four conductor. Totally needed about 600 metres or 12 bundles.

9- Transformer with 3 phases (600 Kw) and 13.8 Amp/3000 Amp used for welding work, w.pump, mill and lathe work. The old transformer has been burned.

It is important to mention that if the above items are provided, the experts working right now, are able to repair the Station's machineries and equipment.

The facilities available in the Station are including a workshop with lathe work system, technical operating system, lifting force, bulldozer, welding, carpentering,
compressure machine, cranes, scrape etc. These machines also need some minor repairs.

The other outstanding point here is that there is no suitable management in the Station. Add the staff is rather forced to work with less salary. Therefore they show less interest in taking care of the Station. The management should be in the hands of an expert who is capable to organize as it is necessary. Which does not exist here at all.

Thus, around the Station, there are mines which have been buried on the surrounding hills and some parts of the road, by the Russian's troops. The mines are anti-personnel and anti-vehicles which threatens going and coming in the area. This area should be demined.

THE KAJAKI BRIDGE

While the Station was being built, a bridge was also constructed close to the Kajaki bazaar. It is built by this project. This bridge joins the central and northern parts of the province with the southwestern parts. At the moment it is very important. Basically wood is used in the bridge, which has a length of about 120 m and 7.5 m breadth. It is 8 meters high. The bridge was built to resist against a load of up to 16 MT. The kind of wood used in it is called "Nishtar", Steel wood. Generally the vertical skeleton of the wood has a cross shape and are bound by nuts and bolts. Each pillar is sunken about 2 m in the ground. The bottom of each long
wood is covered by a special kind of steel called Tesh which are sunken in the water. Then on each of the pillar a horizontal long wood is fastened. Totally the bridge has about 18 long vertical pillars.

The long wood has 12 X 12" height size. Then between every two pillars, which have 6.5 m distance, there are 12 pieces of wood laid by breadth. And then on the top of each square wood a cylinder shaped log is placed on.

Prior to the war, the bridge could resist 16 MT load or vehicles. But since there was no protection, the bridge damaged and now it can resist a load of up to 5 tons. Most of the crosses are loosened and their nuts and bolts have been fallen down. Approximately about 60 m from south, both shoulders of the bridge are damaged.

At the northern end of the bridge, about 20 vertical woods have been fastened by cable. The long woods have moved away from each other and can't sustain a heavy load over them. They should be changed. The bridge caused many transportation problems.

The items needed for repairing are:

1- Steel Wood. 2- Cement. 3- Crane. 4- Nuts and bolts.

A survey should be carried out in order to determine the amount of the items needed exactly.
At present in Helmand, IAHC supports 3 main clinics or hospitals as well as 21 local dispensaries. The hospitals are:

1- Kani-Manda Hospital in Mosa-Qala District.
2- Kajaki Hospital in Kajaki Bazaar.
3- Char-Bagh Hospital close to Deh-Baba village, Kajaki District.

In the above mentioned centres there are 21 Mid Level Health Workers, by the IAHC's Medical Training Course (MTC). Besides, there are 44 persons active as nurse helpers, phamasists, cooks, chokidars and drivers.

For 80 patients, these centres have beds and medical facilities available for hospitalization.

1- Kani-Manda Hospital with 40 beds.
2- Kajaki Hospital with 30 beds.
3- Char-Bagh with 10 beds.

The health centres are active in the sections such as surgery, internal disease ward, dressings, TB with its laboratory, X-ray, immunization and mobile. Thus the two first are equipped with electric generator and w.pump for providing clean drinking water. But the second and third are deprived of having x-ray, TB and vaccination programme.

In addition to these sections, the health centres have pharmacy, medicine store, clothes store and administration offices. There are 24 hours duty in the hospitals.
For transporting an urgent patient, an ambulance is available in Kani-Manda Hospital to take him to the Chaman Town, Pak-Afghan border. And there is a motorcycle in each of the hospital.

The Kani-Manda Hospital is playing a role of a training centre for literates to work in the local remote dispensaries.

LOCAL DISPENSARIES:

These are branches which are being run by the HWs who have been trained in Kani-Manda Hospital since the hospital was set up. These health workers are working as volunteers in their home area beside their main job.

Prior to the MTC trained students in 1987, the dispensaries workers or volunteers were being trained by H. Mohd Qasim. But after 1987 when the MTC trainees arrived to the area, they started to train these volunteers. They were working for 3 months in the hospital. Now their number reaches to 50 persons. They are mainly trained in First Aid, dressings and little sanitation. They receive (B Unit) medicine either directly from IAHC or from Kani-Manda Hospital.

The dispensaries after delivering registers receive medicine. Then IAHC receive these registers from the Kani-Manda Hospital workers in head office Quetta.

The dispensaries are located in different villages of this province. The village they are located are:
Shalmin, Sar-Baghni, Shahe-Ghambar, Khunjak-Mazaar, Teznai, Gorz, Alizai, Dendam Khan, Spin Masjid, Nadali, Marja, Hazar-Juft, Regi, Khoja Dad and Dehzak; in Oruzgan Markaz-e-Dehmawod and Teree; Passa Band and Taiwara in Ghor; in Farah Gulistan and; Sanzari in Kandahar Province.

Another kind of the MLHWS activity is to go to the mujahideen fronts to help those victims of war.

RESEARCH:

In order to have better and serviceable clinics for the local people, it is necessary to predict certain or specified respects of medical activities. So this process is not possible unless a research was carried out. Based on this, a primary research took place in Kani-Manda, Kajaki and Char-Bagh Hospitals as sample (see the graph on the next page).

The graph is prepared for the three groups of the patients (women, men & children upto 15 years). This shows those diseases which are common in the area and they include bacterial, parasitical, viral and contagious diseases. At the first steps we shall consider some important points like—firstly the number of female patients is low and makes 7.40% of the whole patients. Secondly those women who have pregnancy problems or others in the similar state, do not come to the clinics. Only the simple health problems patients attend the clinics to get medicine. Therefore in the primary research we have not brought here some of the diseases.
which are common in females. Thus the same defect in the state of the health of children. However, as an average in Kani-Manda Hospital children are about 22.36 percent of the whole patients.

Bronchitis can be found in all the three classes of the patients. And visible in all the seasons. Generally it increases in the higher temperatures. The low level of sanitary system is the ecological cause of this disease.

Gastritis is higher in both sexes but in old ages. Comparatively men are more affected than women. It is the result of a surrounding full of anxiety. And the nutrition system exists in the area.

Injury is another problem many dwellers are suffering from. All the three classes (men, women & children) are faced to it. But it is much more higher in youngmen. Because they are almost always involved in fightings with the government, rival groups, explosion of mines and in other such events. These cases make 13% of the men patients. Sometimes because of lack of facilities or delay in submitting wounded to the hospital, gangrene set in and their legs or hands have to be amputated. Thus meningitis also sometimes appear as a symptom from the wounds.

Injuries in women are mostly caused by the accidents at home. Rarely the injury in women could be of bombing. Such cases make 8.6% in all the female patients. While the children who become wounded make 12% of the whole children. Generally burn cases in the children are the major causes.
Malaria is also another major problem which is found in all the three classes of the patients. It is emerging along with lashmania which often recorded with the name of abscess. It is widely common and in our research here the number of children affected by malaria. The per centage of them is 6.50 and male generally make about 7.20 %. The affected by this disease make 8.20 % of the whole women patients.

The cause is mainly hot weather with humidity. And dark full of moisture houses which are often surrounded by swamps and dirty ditches, producing malaria mosquitoes.

Shegilla is also causing problems to many local people including men, women and children. The affected male according to the register, make 1.76 %, women 2.1 % and 8.4 % are children. As shown on the graph the level of affected children by shegilla is higher than men and women. It could be majorly because of contaminated water and stale food.

Pain has many complainants as well. And so far the IARC MLHWS has not specified the major roots of it. Though it is not a disease it self, has many complainants among the men, women and children. The percentage of women is 8, men 6.1 and 2.4 % is in the children.

Amoeba and giardia has been registered in all patient classes. And its percentage is higher comparatively. Men and women make 6.4 % and children make 17.13 % of patients in the problems caused by amoeba & giardia. Again bad sanitary system is the cause and growth of these microbes.
Thus the diseases such as arthritis, anaemia, malaria and injury cases are outstanding among females. While injury, gastritis, urine infection, eczima & TB have high percentage in males. But children are chiefly suffering from amoeba, trachoma abscess, shegilla, worms, malnutrition and dehydration. The six kinds of diseases found in children are also common in the area. Measles especially, caused several hundreds deaths in the area children. It is a seasonal problem which rises in the winters. As an average children make 45.6 percent of the northern Helmand population. Last winter beginning of (1991), IAHCs MLHWS in Helmand sent the office several reports of mass death among children caused by measles. For instance in Hosaka village, having 100 houses, about 30 children died which make 5% of the whole children in that village.

Tuberculosis, in the register of Kani-Manda Hospital, showed 400 affected patients. And 98 new patients were registered in 1990. However, the result of the TB research shows that 59.18% of female, 40.82% of men are affected by tuberculosis. But since many women cannot come to the clinics, their percentage might be higher than that of registered.

We are planning to, if time allows us, carry out a precise survey and research of the registers of all the clinics of IAHC. Hopefully we will get a good result and know exactly about the health situation inside Afghanistan. The work we done now is just primary one and presented as a sample to get an idea about health in the area.
CONCLUSION.

As we noticed in the primary research, the following problems are in our opinion outstanding:

1- Surgery should be more considered. Medicine and its instruments should be better qualitatively as well as quantitatively.

2- A number of diseases have ecological roots which could be disappeared by means of prevention, training in public places and to carry out some sanitary activities in the area. Such prevention would help them to get rid of malarias and others.

3- Establishing a laboratory for testing malaria, amoeba and giardia is a necessary step for Kani-Manda Hospital to enable to cope with many common problems.

4- The mobile programme, according to some effects is not necessary anymore. It will be replaced by a training unit (MTC trainees) to go from the Hospital, to the madrassas and teach basic health rules as a whole. It was also decided with full agreement in the shura.

5- Immunization against six kinds of diseases among the children, should be taken in serious consideration.

6- TB Programme should not wait the patients to come to them. It must follow and be in search for its affected patients. They should be given better facilities.

7- The women diseases is an important health issue in
the area. For their better service a clinic should be established in Mosa-Qala. It is a vital need.

8- Besides, if a veterinary clinic is made in the area, it would save the lives of hundreds of local animals from different dangerous diseases. Their meat is being sold, which certainly causes other diseases in the local people. As it is discussed with local people that the animal owners would pay for the medicine costs. The only cost for this clinic would be the salary of veterinarian.
The Shura Declaration on health Programme.

Final decision.
In place of Mobile programme sanitation was approved by the shura collectively to carry, on, for the realization of this decision the shura should help the health workers. care about animal Deaths!
The Shura also approved the establishment of a new animal Clinic in the area to help in the prevention of animal deaths.

Signed by all members of the Shura.

17 Feb 1991
EDUCATIONAL PROGRAMME

There are totally 114 madrassas in Mosa-Qala and Kajaki Districts which are being run and taught by 501 teachers. In addition, there are 7 more madrassas that have hostels for their students. The total number of the students studying in the above madrassas is 13283 persons.

Basically supporting the madrassas started by IAHC in 1985. The support was including Pushto textbooks, notebooks and other stationary material. The books and stationary were delivered to the head-principle of all the madrassas and then being distributed based on the number of the students of the madrassas.

The following are the numbers of the students studying in different grades:

Grade One - 3623 Grade four - 1178
Grade two - 6752 Grade five - 423
Grade three - 1136 Grade six - 153
Grade seven - 13

Until the presence of the Russians' troops, education process had always been interrupted by fighting. But recently it is getting in normal condition. During the conflict the writing method was considered not important. So the students have had not writings in the classes.

And the learning process was only verbal. After the IAHC Mission got to the area and visited the madrassas, they found out this defect in the teaching system. Soon afterwards, they called a shura meeting and discussed the defect and finally after convincing they agreed to teach
writing in the classes. The shura documentation is attached to this report at the end of this theme. The education is compulsory upto the sixth class or grade, but after that it is of free choice.

The book being taught are chiefly religious ones. Beside the religious books, math is taught in the third grade. This is called Mohit-ul-Hisab.

After the students pass the exam, they can study at the higher classes. The total time of the madrassas in winter is 2 hours, while in the summer it is 4 hours. The devoted time to each subject is 40 to 50 minutes. There are 40 holidays during a year. That starts from the 10th of June and finishes on the 22nd of July. Those adult students staying at the hostels, are being are bing sent out to the mujahideen fronts for jenad. But the students who do not have brothers at home and are alone, are not to go to the fronts.

The support of IAHC has not been stopped or delayed so far. This year IAHC has sent out about 2300 notebooks, 2300 pencils, 1918 volume books, 7 pieces of carpets (3 X 3) and 7 bicycles have been distributed to the controllers of the madrassas. Their job is to assess the teaching system, attendance of the students and improving the education in the madrassas.
The Shura Declaration on Educational Programme

The following is the decision of the shura about the distribution of the notebooks and ball pens which indicates the acceptance of writing in the classes as curriculum. However, the first and the second items of the shura decision is about the theme mentioned above of which the translation is given below:

1 - The shura members after discussion and full agreement decided to distribute all the notebooks and ball-pens which are given by IAHC to the students of the first and second grades. The rest students higher than the second grades, should be provided notebooks and ball pens by their parents. And books for all the classes which their number is known to Engineer will be provided by IAHC.

2- It was decided to distribute the textbooks sent by IAHC as sample, to all the classes in Mosa-Qala and Zamindawar (Kajaki) Districts, which will be delivered equal to the number of the whole students.

The shura members' signatures,
یک موضع در تاریخ و مکان و مسلمانان را می‌پردازد.

در موضوعاتی که در دانشگاه‌ها و مراکز علمی ارائه می‌شود، مسائلی را می‌پردازد که در زمینه‌های مختلفی مانند تاریخ، ادبیات و علوم اجتماعی بحث می‌شود.

سیاست‌های دولت در حوزه‌های مختلفی مانند اقتصاد، سیاسی و اجتماعی را در نظر می‌گیرد.

در مورد تاریخ، مسائلی مانند تاریخ‌نگاری، تاریخ‌شناسی و تاریخ‌نگاران را بررسی می‌کند.

در ادبیات، مسائلی مانند نویسندگی، هنر و فرهنگ را مطالعه می‌کند.

در علوم اجتماعی، مسائلی مانند اجتماع، سیاست و اقتصاد را بررسی می‌کند.

در سیاست‌ها، مسائلی مانند سیاست‌نگاری، سیاست‌های دولتی و سیاست‌های سیاسی را مورد بررسی قرار می‌دهد.

در همه موضوعات، مسئله را از نظر شخصی و مربوط به جامعه مطالعه می‌کند.

در این موضوع، از نظر شخصی و مربوط به جامعه مطالعه می‌کند.

در همه موضوعات، مسئله را از نظر شخصی و مربوط به جامعه مطالعه می‌کند.

در این موضوع، از نظر شخصی و مربوط به جامعه مطالعه می‌کند.

در همه موضوعات، مسئله را از نظر شخصی و مربوط به جامعه مطالعه می‌کند.
1- A scenery of the Zobair Land with the tractor ploughing on.

2- A scene of the Zobair Well.
3- The Zobair W. pump in function.

4- The Naicha W. pump lifting up water for irrigation.
5- A view of the Dam of the Kajaki Hydro-Electric Power Station.

6- A view of Kajaki Bridge from the bottom side.
7- The Kajaki Bridge from atop.

8- A scenery of opium poppy land in Shah-Raga Village.
9- A view of IAHC Kami-Manda Hospital in Mosa-Qala.

10- A scene of IAHC Kajaki Hospital in Kajaki District.
11- A scene of T.B. laboratory activity in Kani-Manda Hospital.

12- A patient receives medicine in Kajaki Hospital.